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Introduction 
Dioxins are a range of polychlorinated aryl hydrocarbons belonging to two families, namely polychlorinated 
dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs)1. Dioxins are persistent organic 
pollutants (POPs) that are extremely stable with half-lives of 7-11 years2 and the first POPs to be included in the 
Stockholm Convention. They are ubiquitous in environment and thus cause widespread exposure of humans and 
animals. Dioxins can cause a variety of health hazards to human beings by interfering with the aryl hydrocarbon 
receptor (AhR), including inducing cancer, triggering disorders of immune, reproductive development and 
endocrine system, etc3. However, previous dioxin toxicity studies primarily focused on the activation of AhR with 
signaling pathways at gene and protein levels. The links between dioxin-medicated AhR activation and 
physiological effects of toxicity remain largely unknown and need to be further identified through the evaluation 
of downstream metabolic processes. Mass spectrometry (MS)-based metabolomics that measures changes in small 
molecule downstream of the genome, transcriptome and proteome can captures the terminal dynamic alteration of 
metabolites in response to external stressors4. This technique has been expanded quickly and used to investigate 
biological effects of many environmental contaminants in humans5. Therefore, it is worthy conducting a global 
metabolomics study to investigate metabolic perturbations and toxic mechanisms possibly related to dioxin 
exposure in humans. In this study, metabolic profiles were investigated on human serum samples with the hope to 
understand the underlying mechanisms of adverse health risks associated with dioxin exposure.  

Materials and Methods 
Serum samples of 215 male workers from a waste incineration power plant in Shenzhen were collected. To begin 
with, dioxin quantification was conducted based on the US EPA method 1613 with some minor modifications 
using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). Then, 48 and 47 
healthy participants with dioxin exposure concentration of 75% or more and of 25% or less based on quartile 
distribution of the serum dioxin concentrations were further selected for metabolomics analysis. After a simple 
protein precipitation, the metabolic profiling analysis of the serum samples were performed using an ultrahigh-
performance liquid chromatography system coupled to a QExactive focus hybrid quadrupole-orbitrap mass 
spectrometer.  

Results and discussion 
Demographic characteristics of the two groups are listed in Table 1. The serum TEQ values were statistically 
significant between the two groups (p < 0.001). As a result, we presumed serum TEQ values to be the key factors 
leading to the potential health effects. It was found that there were significant differences in smoking and education 
levels between the two groups. Therefore, the relationship between metabolites and serum dioxin exposure levels 
was investigated by using partial correlation analysis adjusted by age, BMI, smoking status, drinking frequency 
and education level.  

Table 1. Demographic characteristics of the two groups for metabolomics study. 

Characteristics High dioxin exposure group 
(n=48) 

Low dioxin exposure group 
(n=47) p-value

TEQ value (pg TEQ/g lipid) 48.71 (29.49-765.35) a 8.16 (3.29-9.94) a <0.001 
Age (years) 27.54 (4.47) b 27.81 (4.72) b 0.731 
Height (cm) 171.35 (3.91) b 170.79 (5.69) b 0.773 
Weight (kg) 65.85 (14.06) b 66.19 (12.62) b 0.720 
BMI (kg/m2) 22.36 (4.84) b 22.85 (3.86) b 0.207 

Cigarette Smoking 
Never 38 17 

<0.001 Past 0 3 
Current 10 27 

Alcohol Drinking 
Never 45 40 0.263 Once/twice a week 2 6 
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a Expressed as medium (min-max). 
b Expressed as mean (SD); SD: standard deviation. 
 
The obtained data was imported into software SIMCA-P (Version 14.1, Umetrics, Umea, Sweden) for 
multivariable statistical analysis. A partial least-squares discriminant analysis (PLS-DA), a supervised pattern 
recognition approach, was used for group differentiation between the high dioxin exposure group and low dioxin 
exposure group following unit variance scaling (Figure 1A and B). The results indicated that dioxin exposure may 
significantly perturb small molecule metabolisms. The developed PLS-DA models were further validated by using 
the 500-time permutation test (Figure 1C and D). The results showed that the PLS-DA models were not overfitting. 
 

 
Figure 1. Scatter plots obtained from PLS-DA models: LC-MS-ESI positive-ion mode (A) and LC-MS-ESI  
negative-ion mode (B). The blue triangles and green triangles indicate for low dioxin exposure group and high 
dioxin exposure group, respectively. Validation of the developed PLS-DA models using the 500-time 
permutation tests: validation plot for positive-ion mode (C) and negative-ion model (D). R2 = the goodness of fit 
(green circle); Q2 = the predictive capability (blue circle). 
 
The differential metabolites between the two groups were selected based on three criteria: (1) the variable 
importance in projection (VIP) scores in PLS-DA models >1; (2) the p-values in Mann-Whitney U test between 
the two groups <0.05; (3) the p-values in partial correlation analysis after adjustment by age, BMI, smoking status, 
drinking frequency and education level <0.05. After the screening and identification with standard materials, a 
total of 20 metabolites were identified as potential biomarkers, including acylcarnitines, fatty acids and derivatives, 
glycerophospholipids, etc. (Table 2). The identified metabolites changed linearly along with the TEQ values 
(Figure 2). 

 More than 3 times a week 1 1  

 Education Level   
 Less than high school 6 16 

<0.05 
 

 High school 14 16  

 More than high school 28 15  
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Table 2. Summary of the 20 potential biomarkers. 
No Metabolites a FC b p-value c VIP Class Related pathway 
1 Tetradecanoylcarnitine a 1.86 1.06E-04 1.46 Acylcarnitines β-Oxidation of fatty acid 
2 Decanoylcarnitine a 2.10 1.84E-04 1.47 Acylcarnitines β-Oxidation of fatty acid 
3 L-Palmitoylcarnitine a 1.58 1.67E-03 1.44 Acylcarnitines β-Oxidation of fatty acid 

4 Palmitamide 2.56 2.43E-08 2.28 Fatty acids and 
conjugates β-Oxidation of fatty acid 

5 3-Hydroxycapric acid a 0.58 2.15E-04 1.67 Fatty acids and 
conjugates β-Oxidation of fatty acid 

6 Prostaglandin H2 (PGH2) 3.27 1.17E-10 2.40 Fatty acids and 
conjugates 

Arachidonic acid 
metabolism 

7 Arachidonic acid (AA) 0.87 1.86E-03 1.40 Fatty acids and 
conjugates 

Arachidonic acid 
metabolism 

8 Stearidonic acid 1.28 8.27E-03 1.27 Fatty acids and 
conjugates 

α-Linolenic acid 
metabolism 

9 9-OxoODE 0.55 1.35E-05 2.23 Fatty acids and 
conjugates Linoleic acid metabolism 

10 Octadecanamide 2.95 7.37E-09 2.35 Fatty acids and 
conjugates / 

11 
Glycerophospho-N-

palmitoyl ethanolamine 
(GP-NPEA) 

1.50 5.07E-05 2.05 Fatty acids and 
conjugates / 

12 N-Oleoylserine 1.34 4.01E-07 2.06 Fatty acids and 
conjugates / 

13 PC (18:1/18:1) 0.34 4.47E-04 1.74 Glycerophospholipids Glycerophospholipid 
metabolism 

14 LPC (16:0/0:0) 1.44 4.34E-04 1.75 Glycerophospholipids Glycerophospholipid 
metabolism 

15 LPE (16:0/0:0) 0.60 2.70E-05 1.53 Glycerophospholipids Glycerophospholipid 
metabolism 

16 Sphingosine-1-phosphate 
(S1P) a 1.55 3.97E-04 1.45 Sphingolipids Sphingolipid metabolism 

17 Adenosine 
monophosphate (AMP) a 1.67 7.92E-08 2.57 Purines and purine 

derivatives Purine metabolism 

18 Xanthine a 0.59 2.61E-03 1.04 Purines and purine 
derivatives Purine metabolism 

19 Indolelactic acid a 1.88 4.37E-02 1.33 Tryptophan 
metabolites Tryptophan metabolism 

20 Aspartic acid a 0.90 3.38E-02 1.13 Amino acids Aspartic acid metabolism 
a The metabolite was identified by authentic standard. b FC (fold change) represented the ratio of peak intensity 
of high dioxin exposure group to low dioxin exposure group. c p-value was obtained by Mann-Whitney U test 
between peak intensities of the metabolite in the two groups.  

 
Figure 2. Linear fit graphs of log TEQ value and log peak intensity of the 20 potential biomarkers. 
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Pathway analysis based on the identified metabolites was carried out using MetaboAnalyst according to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway database (www.genome.jp/kegg/). These results suggested 
metabolic pathways such as fatty acid β-oxidation, essential fatty acid metabolism, arachidonic acid metabolism, 
glycerophospholipid and sphingolipid metabolism and purine metabolism were disturbed after dioxin exposure 
(Figure 3).  
Because the fatty acid β-oxidation plays a key role in energy homeostasis in organs especially in the liver6, the 
noticed downregulation of fatty acid β-oxidation suggested that people with high dioxin exposure may be at risk 
of liver diseases. The significant up-regulations of PGH2, LPC (16:0/0:0), LPE (16:0/0:0) and sphingosine-1-
phosphate implied that high level of dioxin exposure may be associated with inflammation. These findings implied 
the associations between dioxin exposure and potential adverse health risks including liver diseases and 
inflammation. This study provides important evidence for the health hazards of dioxins. 

 
Figure 3. Disturbed signaling pathway. 
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