Cod: 4.5025

EMERGING 'COMPOUNDS OF CONCERN' WITH POP-LIKE PROPERTIES: AN OVERVIEW

<u>B. Loganathan</u>¹, K. Sajwan² ¹Murray State University ²Savannah State University

Introduction

During the past century, a vast number of organic chemicals have been manufactured and used in industrial, agricultural, public health, consumer products and other applications. Widespread use of organohalogens, including chlorinated, brominated and fluorinated compounds, lead to environmental contamination and human exposures1,2. Among the organohalogens, chlorinated compounds such as PCBs and pesticides very rapidly contaminated the environment and biota during the periods of their use for agricultural and public health purposes. The contamination levels declined after the ban/severe restrictions placed on the production and use of these compounds in most of the developed countries. In the recent years, new organohalogens (especially brominated and perfluorinated compounds) and other compounds used in industries, pharmaceutical and personal care products are continue to be discovered in the environment and biological samples. Several of these compounds exhibit physical and chemical properties similar to classical persistent organic pollutants (POPs). This overview deals with 'Compound of Concern' with POP-like properties for future environmental and health issues.

POP-Like Properties

Classical persistent organic pollutants (polychlorinated biphenyls (PCBs), organochlorine pesticides and dioxins etc) have physicochemical and biochemical properties such as water solubility, vapor pressure, lipophilicity, biodegradability and particle affinity were at appropriate magnitude to make them stable in the environmental media, bioaccumulate and biomagnify in food chain and cause chronic toxic effects2. Several of the new emerging pollutants discovered in the recent years also exhibit POP-like properties. The compounds that exhibit POPs-like properties are presented in presented in Table 1.

Compounds of Concern

The emerging persistent organic compounds of concern with POP-like properties are grouped as (i) Flame retardants, (ii) Perfluorinated compounds (PFCs) and other industrial chemicals (iii) Pharmaceuticals (iv) Personal care products. These compounds were detected in one or more environmental media (air, water, soil, sediment) and/or biota (aquatic, terrestrial organisms)3-10. The compounds of concern that were detected in any one or more of environmental and biological sample(s) are listed in the Table 1.

Recent studies have revealed occurrence of several compounds used in flame retardants and alternative compounds introduced to serve as flame retardants, industrial chemicals including perfluorinated compounds, bisphenol A and its derivatives, pharmaceuticals and personal care products in various environmental media from both developed and developing countries. Based on these reports, it may be surmised that compounds of concern with POP-like properties will be of concern for future environmental and health problems (Figure 1).

Classical organochlorines, due to their recalcitrant properties, exposure pathway is complicated involving environmental contamination, bioaccumulation and biomagnification in the food chain and ultimately reaches top predators such as humans in the terrestrial ecosystem and marine mammals in the aquatic ecosystem. This process takes relatively longer time to reach humans from the time of application or use. Whereas, emerging new compounds of concern are used or applied directly to the human skin or consumed via contaminated water and/or food. Particularly, human exposure pathway for pharmaceuticals and personal care products are direct and intimate. Based on the use and their POP-like property, it can be predicted that the environmental contamination as well as human exposure and

health effects by these compounds will continue to increase for several decades in both developed as well as developing countries.

References

1. Loganathan, B.G. (2012) In. Global Contamination trends of persistent organic chemicals. (Loganathan BG and PKS Lam. Eds.), pp. 3-32, CRC Press, 3-32.

Loganathan, B.G., and Kannan, K. (1994) Ambio 23, 187-191
 Yin, J., Meng, Z., Zhu, Y., Song, M., and Wang, H. (2011). Anal. Methods. 3, 173-180

4. DiGangi, J., Blum, A., Bergman, A., Lucas, D., Schecter, A., Scheringer, M., Shaw, S.D., and Webster, TF. (2010). Environ. Health Perspect. 118, A516-A518.

5. Matsushima, A., Liu, X., Okada, H., Shimohigashi, M., and Shimohigashi, Y. (2010). Environ. Health Perspect. 118, 1267-1272.

6. Yamashita, N., Yeung, L.W.Y., Taniyasu, S., Kwok, K.Y., Petrick, G., Gamo, T., Guruge, K.S., Lam, P.K.S., and Loganathan, B.G. (2012). In. Global Contamination Trends of Persistent Organic Chemicals. (Loganathan, BG and PKS. Lam. Eds), pp.593-628, CRC Press. Boca Raton, FL., USA.

7. Nakata, H., Shinohara, R., Murata S, and Sasaki, H. (2012). In. Global Contamination Trends of Persistent Organic Chemicals. (Loganathan, BG and PKS. Lam. Eds), pp. 87-96, CRC Press. Boca Raton, FL., USA.

8. Loganathan, B.G., Phillips, M., Mowery, H. and Jones-Lepp, T.L. (2009). Chemosphere 75, 70-77. 9. Taniyasu, S., Yamashita, N., Yamazaki, E., Rostkowski, P., Yeung, L.W.Y., Kurunthachalam, S.K. Kannan, K., Loganathan, B.G. (2015). In. Water Challenges and Solutions on a Global Scale. American Chemical Society Symposium volume 1206, (Ahuja, S., Andrade, J., Dionysiou, D., Hristovski, K., Loganathan, B.G., Eds), pp 221-244, ACS Division of Environmental Chemistry Inc., Washington DC. 10. Horii, Y., Reiner, J.L., Loganathan, B.G., Kumar, K.S., Sajwan, K. and Kannan, K. (2007). Chemosphere 68, 2011-2020.

Table 1. 'Compounds of Concern' for future environmental and health issues. Prepared based on references 3-10.

Compound Name (CAS Number)	Abbreviation	
(i) Flame Retardants		
1 2-Bis(2 4 6-tribromonhenoxy)ethane (37853-59-1)	BTBPE	
1 2-Bis(tetrahromonthalimido)ethane (32588-76-4)	BTBPIE	
5 6-Dibromo-1 10 11 12 13 13-hexachloro-11-tricyclo[8 2 1 02 9]tridecene	DBHC-TCTD or HCDBCO	
(51936-55-1)		
Decabromodiphenylethane (84852-53-9)	DBDPE	
Di(ethylhexyl)tetrabromonthalate (26040-51-7)	DEHTBP or TBPH	
Dechlorane Plus, Bis(hexachlorocyclopentadieno)cyclo-octane (13560-89-9)	DP	
2-Ethylhexyl-2 3 4 5-tetrabromobenzoate (183658-27-7)	EH-TBB or TBB	
Hexabromobenzene (87-82-1)	HBB	
Hexabromocyclododecane, major isomers are α , β , γ -HBCDD (3194-55-6)	HBCD or HBCDD	
Pentabromoethylbenzene (85-22-3)	PBEB	
Pentabromotoluene (87-83-2)	PBT	
Tetrabromobisphenol A (79-94-7)	TBBPA	
Tetrabromobisphenol A diallyl ether (25327-89-3)	TBBPA-DAE	
Tetrabromobisphenol A bis(2,3-dibromopropyl) ether (21850-44-2)	TBBPA-DBPE	
1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (3322-93-8)	TBECH	
2,4,6-tribromophenyl allyl ether (3278-89-5)	TBP-AE or ATT	
Tris(2-chloroethyl)phosphate (115-96-8)	TCEP	
Tris(1,3-dichloroisopropyl)phosphate (13674-87-8)	TDCPP or TDCP	
Short-chain chlorinated paraffins (85535-84-8 and 71011-12-6)	SCCP	
(ii) PFCs and other Industrial Chemicals		
Perfluorooctane sulfonyl fluoride (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluo	prooctane-1-sulfonyl fluoride)	
(307-35-7)	POSF	
Perfluorooctane sulfonic acid (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonic acid)		
(1763-23-1)	PFOS	
Perfluorooctane sulfonate Potassium salt (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-hepta	decafluorooctane-1-sulfonate	
Potassium salt) (2795-39-3)	PFOS K	
N-ethyl-perfluorooctanesulfonamide (1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadeca	fluorooctane-1-sulfonamide)	
(754-91-6)	N-EtFOSA	
Perfluorobutanoic acid (2,2,3,3,4,4,4-heptafluorobutanoic acid) (375-22-4)	PFBA	
Perfluroropentanoic acid (2,2,3,3,4,4,5,5,5-nonafluoropentanoic acid) (2706-90-	3) PFPeA	
Perfluorohexanoic acid (2,2,3,3,4,4,5,5,6,6,6-undecafluorohexanoic acid) (307-2	24-4) PFHxA	
Perfluroroheptanoic acid (2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptanoic acid)	(375-85-9) PFHpA	
Perfluorooctanoic acid (2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoic ac	id) (335-67-1) PFOA	
Perfluorononanoic acid (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononanc	bic acid) (375-95-1) PFNA	
Perfluorodecanoic acid (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluoro	decanoic acid) (335-76-2) PFDA	
Perfluoroundecanoic acid (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-henicos	safluoroundecanoic acid)	
(2058-94-8)	PFUnDA	
Perfluorododecanoic acid (2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-t	ricosafluorododecanoic acid)	
(307-55-1)	PFDoDA	
8:2 fluorotelomer alcohol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10,10-heptadecafluoro-	l-decanol)	
(0/0-37-7)	0.2 FIUH	
Components of Fire-Fighting Foams	DECC	
Pertluorooctane sultonate	PFUS	
Perfluoronexanesulphonate	PFHXS	
Perintorodulanesul-phonate		
remuoroocianesuironamide (PFOSA)Pperfluoro-decanoate	ггда	

Perfluorononanoate Perfluorooctanoate Perfluoro-heptanoate Perfluoroundecanoate Perfluoro-hexanoate	PFNA PFOA PFHpA PFUnDA PFHxA
Other Industrial Chemicals Bisphenol A, (4,4-dihydroxy-2,2-diphenyl propane) (80-05-7) Bisphenol AF (hexafluorobisphenol A), (1,1,1,3,3,3-hexafluoro-2,2-bis(4-hydro (1478-61-1) Bis(2-ethylhexyl)tetrabromophthalate (26040-51-7)	BPA xyphenyl)propane) BPAF BEHTBP
(iii) Pharmaceuticals Macrolide antibiotics Carbamazepine	
 (iv) Personal Care Products Musk Fragrances 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2- benzopyrane (12 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydeonaphthalene (1506-02-1) UV Stabilizers 	22-05-5) HHCB AHTN
2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (3896-11-5) 2,4-di-t-butyl-6-(5-chloro2H-benzotriazol-2-yl) phenol (3864-99-1) 2-(2H-benzotriazol-2yl)-4,6-di-t-pentylphenol (25973-55-1)	UV-326 UV-327 UV-328

Figure 1. A schematic representation of time perspectives of classical POPs and compounds of concern with POP-like properties.