The authors want to express their acknowledgments to the French General Directorate for food (DGAl) as well as the Lebanese Assosciation for Scientific Research (LASeR), both for the financial support.

6. References

- [1] Bergman, Ryden, Law, de Boer, Covaci, Alaee, Birnbaum, Petreas, Rose, Sakai, Van den Eede, Van der Veen. Environ Int. 2012;49: 57–82.
- [2] Sundkvist, Olofsson, Haglund. J. Environ. Monit. 2010;12: 943-951.
- [3] Van der Veen, De Boer. Chemosphere 2012;88:1119–1153.
- [4] Brandsma, De Boer, Cofino, Covaci, Leonard. Trends in Analytical Chemistry 2013;43:217–228.

Figure 1. Overlaid ion chromatograms obtained for the optimised SRM transitions of the 18 OPEs by GC-APCI-MS/MS.

Table 1. Optimised transition parameters for the 18 OPEs and obtained instrumental detection limits (IDL) (CE: collision energy; CV: cone voltage).

(IDL) (CL. comsidients), Cv. cone vonage).											
			GC-APCI-	MS/MS					GC-EI-MS/	MS	
	Transitions						Transitions				
		CE 1		CE 2				CE 1		CE 2	
Compound	T1	(eV)	T2	(eV)	CV(V)	IDL (ug.L-1)	T1	(eV)	T2	(eV)	IDL (ug.L-1)
TEP	183>99	15	183>155	5	20	1	155>99	10	127>99	10	0.4
TPrP	225>99	10	225>183	5	20	0.4	141>99	10	183>99	15	0.4
TnBP	267>99	15	267>155	10	30	0.4	155>99	10	211>99	20	0.4
TiBP	267>99	15	267>155	10	30	0.4	155>99	10	211>99	10	0.4
TEHP	435>99	15	435>323	5	30	0.4	113>57	10	113>95	10	10
TBEP	399>199	15	399>99	25	30	0.4	125>99	10	199>99	10	40
TPP	327>77	25	327>125	25	30	0.4	326>215	20	326>169	20	1
EHDP	251>95	20	363>251	5	40	0.4	251>77	20	251>152	20	1
DBPhP	287>175	15	287>231	5	20	0.4	175>77	15	175>51	10	1
DPhBP	307>251	10	251>153	15	30	0.4	251>152	15	306>251	10	2
o-TCP	369>91	25	369>166	25	40	0.4	368>181	10	165>139	25	2
m-TCP	369>166	25	369>91	25	40	0.4	368>165	25	368>261	10	1
p-TCP	369>166	25	369>91	25	40	0.4	368>108	15	368>198	15	1
TCEP	285>223	10	287>99	15	30	0.4	249>125	10	249>99	10	1
TCPP	329>99	15	327>251	5	20	0.4	125>99	10	201>125	10	1
TDCIPP	431>321	5	321>209	5	30	1	191>75	10	381>159	10	2
TDBPP	698.5>99	25	698.5>299	15	30	1	337>137	5	217>137	5	100
TTBNPP	1018>147	30	1018>307	20	30	10	713>309	15	713>145	15	500

Figure 2. Example of a quality control chart for TPrP, showing the repeatability of results within the upper and lower warning limits (analysis on GC-EI-MS/MS).