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Introduction  
 

The development of novel approaches allowing the modeling of the metabolic network of biological systems 

opens new perspectives for studies exploring the dangers associated with the presence of chemicals in the human 

food and environment. We previously demonstrated that the modulation produced by very low doses of EDC 

(Endocrine Disrupting Chemicals) could be detected when exposure occurs during the perinatal period
1
. 

However, in vivo studies are expensive, and there is a need to reduce the number of animals used for laboratory 

experiments. Thus, in vivo studies cannot systematically be carried out for all the chemicals listed in extensive 

screening programs, or which effects need to be investigated within the frame of specific regulations such as the 

EU REACH directive. It is expected that the use of human metabolically competent cell lines, combined with 

high resolution spectral analyses, will allow, in a first step, to identify "metabolic fingerprints" that will 

contribute to the screening of chemical pollutants. Then, based on a reconstruction of the metabolic network, and 

on comparative studies of closely related xenobitics (in terms of structure and/or effects), evidence for metabolic 

networks modulation should allow highlight major disruption routes of cellular metabolism. The use of non 

targeted approaches also opens the way to a better understanding of the mechanisms of toxicity of low doses of 

exposure, and of the effect of mixtures. Ultimately, in vitro and in vivo approaches should be combined for 

building novel strategies, with the aim to characterize the danger associated with the exposure to major groups of 

chemical contaminants. Over the last decades, novel questions in toxicology have emerged regarding chemicals 

which can interfere with the homeostasis of living systems. Many man-made molecules present in the 

environment and the food-web are suspected EDC, and there is a growing awareness of the public regarding the 

risks associated with such bioactive substances. Concerns about the possible adverse effects of EDC are based 

both on epidemiological evidences in human and on effects demonstrated in animal studies. In the EU, the 

REACH regulation entered into force in 2007, with the aim to gain a better understanding of the risks related to 

chemicals, and eliminate substances which raise high concerns. But the evaluation of EDC sets new challenges 

for toxicologists as well as health risk assessment agencies, as illustrated by ongoing controversies on the “low 

dose” effects of endocrine disruptors
2
. Interestingly, even for the best known model xeno-estrogens, the 

mechanisms of low-dose metabolic modulation is only poorly understood, and the observation of non-monotonic 

dose-response curves (in vitro and in vivo)
2,3

 suggests a metabolic modulation based on multiple targets at the 

level of the cell, the tissue, or the whole organism. Since numerous proofs of evidence have demonstrated that 

chemicals could interfere with the endocrine system, the debate has gradually evolved towards a major question 

currently discussed by toxicologists: should such effects be considered as adverse effects or are they simply an 

adaptive response with no health consequences ? 
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Materials and methods  
 

All samples used for the experimental studies illustrating the presentation were prepared for spectral analysis 

(NMR or MS) using protocols detailed previously (see Cabaton et al.
1
). Samples were submitted to 

1
H-NMR 

spectroscopy at 600.13MHz (Bruker Avance DRX-600 spectrometer fitted with a cryoprobe). For MS extracts, 

we used ultra high performance liquid chromatography coupled to high resolution MS (UHPLC-HRMS). The 

UHPLC system was a RSLC3000 (Dionex-Thermo Scientific, Les Ulis, France). Eluted compounds were 

detected using a LTQ-Orbitrap XL mass spectrometer (Thermo Scientific les Ulis, France) equipped with an 

electrospray ionization source. For each spectrum, baseline and phase correction, data reduction, and bucketing 

multivariate analyses were used to evaluate the treatments on the metabolome. We first performed PCA to reveal 

intrinsic treatment-related clusters and detect eventual outliers. PLS-DA was then used to model the relationship 

between group and spectral data. We used orthogonal signal correction filtering
4
 to remove variation not linked 

to the treatment. Filtered data were mean centered and scaled seven-fold cross-validation was used to determine 

the number of latent variables to be included in the PLS-DA models and to estimate the predictive ability (Q² 

score) of the adjusted models. The model is considered to be valid for a Q² score above 0.4
5
. Discriminant 

variables were determined using VIP (variable importance in the projection). We used this global measure of the 

influence of each variable on the PLS components to derive a subset of the most important metabolites for the 

separation of experimental groups. Then, we used the Kruskal–Wallis test to determine which metabolites were 

significantly different between groups. SIMCA-P software (V12; Umetrics AB, Umea, Sweden) was used to 

perform the multivariate analyses. Modeling of metabolic networks was carried out as detailed elsewhere
6
 and 

with the help of the INRA Metexplore server we have developed (www.metexplore.fr). 

 

Results and discussion 
 

Novel systems biology tracks for the study of the low dose effects of chemicals. Numerous chemicals are 

suspected to be responsible for biological effects at exposure levels way below the reference doses. Metabolic 

fingerprints, either based on nuclear magnetic resonnance (NMR) or mass spectrometric (MS) data, allow to  

unveil specific and significantly distinct metabolomic patterns, discriminating between exposed/non exposed 

groups, based on in vivo or in vitro experiments. A proof of concept was provided in vivo for animals according 

to their level of exposure to xeno-estrogens such as diethylstilbestrol (DES) or bisphenol A (BPA)
1
. Similar 

approaches can be successfully attempted in human beings
7
. But the human situation is more complex than that 

of laboratory animals, due to many factors including exposure conditions and a much higher genetic variability. 

 

Moreover, biomarkers identified in biofluids are not the direct image of the metabolic impact on target tissues 

such as the liver, e.g. the main metabolizing organ. Hence, it is currently extremely dubious to link in vivo 

metabolic pathway modifications and observed metabolite concentration changes in biofluids. We expect that the 

interpretation of human metabolomic biomarkers will remain complicated until solid evidences can be obtained 

in vitro to support in vivo findings. Strong evidences were obtained using contaminants which raise concerns 

regarding human health, such as perfluorinated chemicals and bisphenols (figure 1 A & B). 

 

Figure 1.A (left) and 1.B (right). LC-HRMS-based metabolomics discrimination of extracts of HepG2 cells 

incubated 24 hr with (A) different concentrations of perfluoroctane sulfonate (control: DMSO) or (B) different 

concentrations of bisphenol A (control: DMSO). Tri- (PFOS) and two- (BPA) dimensional PLS-DA scores plots. 

A (PFOS): 1
st
, 2

nd
 and 3

rd
 latent variables out of 4 components are displayed, with R

2
Y=74.0% (22.4, 17.7, 19.1 

& 14.8% on the 1
st
, 2

nd
, 3

rd
 and 4

th
 axis, respectively) and a Q² score of 0.619 (0.215; 0.215; 0.265; 0.158): model 

is valid and there are 76 VIP (Variables of Importance for the Projection) discriminating the different groups. B 

(BPA): 1
st
 and 2

nd
 latent variables out of 3 components are displayed, with R

2
Y=89.9% and a Q² score of 0.661: 

model is valid and there are 23 VIP. 
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In silico analysis using the human metabolic network permits to decipher which processes are involved in the 

observed metabolomic shifts (Figures 2 & 3). This so called "genome scale model"
8
 aims at gathering all the 

metabolic reactions the organism can perform into a single mathematical framework that can then be mined 

using dedicated bioinformatics algorithms
9
. Some of these methods are already available in the MetExplore web 

server developed by INRA (www.metexplore.fr). 

 

 

 

 
Conclusions: 

 

The development of global approaches in the field of toxicology, based on metabolomics and on the subsequent 

reconstruction of metabolic networks, opens new possibilities to explore the effects of candidate metabolic 

disrupters. Untargeted approaches of the metabolic shifts of human hepatic cell line models following chemical 

exposure, suggest that concentration-specific effects could be highlighted in vitro. For model estrogens, these 

metabolic shifts, in accordance with effects previously demonstrated in vivo
1,10

, support the hypothesis of a 

modulation of the energetic metabolism. It is expected that specific shifts of the metabolome could be used in the 

future to predict potential effects of chemical contaminants, thus providing an interesting method for preliminary 

(or more advanced) toxicity screening. Despite whole body effects involving the disruption of homeostasis can 

by definition only be studied in vivo, the in vitro investigation of metabolic networks based on an untargeted 

Figure 2. Network analysis of 

HepG2 metabolomics data in the 

context of the human metabolic 

network. From left to right: the 

entire metabolic network 

described in databases, a zoom 

view of the metabolic network 

(green dots are metabolites 

identified in the samples), and 

part of the metabolic network 

extracted by our algorithm 

connecting the identified 

metabolites in an interpretable 

“metabolic story” (A: purine 

pathway B: pyrimidine pathway). 
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exploration of the metabolome through NMR and/or HRMS should provide useful hints about the 
toxicological profile and/or mechanisms of action of chemical contaminants, especially when low 
concentration of exposure are examined. 
 

ab initio reconstruction

in silico reconstruction

genome

Reconstruction 

softwares

KEGG

metabolome Metanetter

Data integration

Web server

Metabolic 

networks DB

Algorithms

Visualisation

 
 

 

Acknowledgements: 
We thank the support of the Agence Nationale de la Recherche (ANR projects “Contreperf” and “Nistec”). 

 

References:  
1. Cabaton NJ, Canlet C, Wadia PR, Tremblay-Franco M, Gautier R, Molina J, Sonnenschein C, Cravedi JP, 

Rubin BS, Soto AM, Zalko D. (2013). Environ Health Perspect. 586-93. 

2. Vandenberg LN, Maffini MV, Sonnenschein C., Rubin, BS, Soto AM. (2009). Endocr Rev 30, (1), 75-95. 

3. Shioda T, Rosenthal NF, Coser KR, Suto M, Phatak M, Medvedovic M, Carey VJ, Isselbacher KJ. (2013). 

Proc Natl Acad Sci. USA. 110(41):16508-13. 

4. Wold S, Antti H, Lindgren F, Ohman J. (1998); Chemometr Intell Lab 44:175-185. 

5.  McCombie G, Browning LM, Titman CM, Song M, Shockcor J, Jebb SA, Griffin JL. (2009). Metabolomics 

5:363-74. 

6. Jourdan F, Cottret L, Huc L, Wildridge D, Scheltema R, Hillenweck A, Barrett MP, Zalko D, Watson DG, 

Debrauwer L. (2010). Metabolomics. 6(2):312-321. 

7 Bonvallot N, Tremblay-Franco M, Chevrier C, Canlet C, Warembourg C, Cravedi JP, Cordier S. (2013). PLoS 

One. 21;8(5). 

8. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, et al. (2013) Nature 

Biotechnology, advance on. 31(5):419-25. 

9. Mo ML, Palsson, B. (2009) Trends in biotechnology, 27(1):37–44. 

10. Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, Quesada I, Nadal Á. 

(2012). Mol Cell Endocrinol. 355(2). 

 
 

Figure 3. Reconstruction of the 

metabolic network based on the 

combined use of in silico 

databases and metabolomic data. 

The MetExplore server 

(www.metexplore.fr). 
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