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Introduction 

Metabolomics is defined as the global analysis of the metabolome and has, since its introduction, stimulated a large 

number of publications in a broad range of research fields [1]. Recent advances in mass spectrometry technology and 

bioinformatics have enabled the application of metabolomics in the context of large clinical and epidemiological 

studies allowing researchers to study individual metabolite profiles and how they relate to various phenotypes in 

humans.  

 

Persistent organic pollutants (POPs), such as the organochlorine pesticides, are known toxicants and have been 

linked to numerous adverse effects in humans [2]. DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) is one of the 

most well-known amongst the organochlorine pesticides and large quantities of DDT have been and still are 

distributed worldwide [3] . DDT is easily metabolized into two major breakdown products including p,p’-DDE (1,1-

dichloro-2,2-bis(p-chlorophenyl) ethylene) and p,p’-DDD (1,1-dichloro-2,2-bis(p-chlorophenyl) ethane). In contrast 

to the parent compound, p,p’-DDE is extremely persistent and is frequently detected in the general population in 

countries all over the world [4] . 

 

Several metabolites in human circulation (e.g., fatty acids, amino acids, glycolipids) play a key role in human health 

and are important in development of human diseases [5]. However, whether POPs affect the levels and profiles of 

metabolites in human circulation remains unclear. In this study we investigated the effect of p,p’-DDE levels on the 

metabolome by determining both circulating levels of p,p’-DDE and global metabolite profiles in 1,016 serum 

samples from the “Prospective Investigation of the Vasculature in Uppsala Seniors” (PIVUS) study.   

 

Materials and methods  

Study population and blood sample collection 

The participants in the PIVUS study were randomly selected from the general population in the community of 

Uppsala, Sweden. Invitation letters were sent between April 2001 and June 2004 and within two months of each of 

the participants 70th birthday. The target sample population was 2, 025 participants out of which 1, 016 participated. 

Serum and plasma were collected in the morning after overnight fast. After the samples were collected (1-2 mL 

vials), the vials were placed in freezers (-20 °C) until used for chemical analysis. The study was approved by the 

Ethics Committee of the University of Uppsala and the participants gave written informed consent. 

 

p,p’-DDE analysis 

The sample extraction and clean-up method for p,p’-DDE analysis is described in detail by Salihovic et al. (2012).  

In short, plasma sample were extracted using solid phase extraction with Oasis® HLB SPE (Waters, Milford, MA, 
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USA) cartridges. Further cleanup was performed using small activated multilayer silica gel columns. The extracts 

were injected on a 6890N gas chromatograph (GC) (Agilent Technologies, Atlanta, GA, USA) and separated on a 

30m x 0.25 i.d. x 0.25 µm DB-5 column (SGE Analytical Science, Victoria, AUS). Measurements were performed 

on a Micromass Autospec Ultima (Waters, Mildford, MA, USA) mass spectrometer, monitoring the two most 

abundant ions of the chlorine cluster of the most abundant fragments in addition to one ion for the 
13

C-labeled 

internal and recovery standard.  

 

Metabolomics profiling 

Non-targeted metabolite profiling was performed using methods  previously described by Broeckling et al. (2012). 

Briefly, serum samples were thawed and 100 µL of serum was transferred to a 96-well plate and 400 µL methanol 

was added to precipitate proteins. Separation and data acquisition was performed on Acquity UPLC coupled to a 

Xevo G2 Q-TOFMS (Waters Corporation, Milford, USA) with an atmospheric electrospray interface operating in 

positive ion mode. Non-consecutive duplicate sample aliquots of 1 µL were injected onto an Acquity UPLC BEH C8 

(1.8 µM, 1.0 x 100 mm) analytical column held at 50°C using a gradient of water, methanol, and formic acid. Mass 

analysis was performed in the full scan MS mode (m/z 50-1200) at 6 V and fragmentation scans were collected in the 

MS
E
 mode using a collision ramp of 15-30V.  

 

Data processing  

Raw data were processed using XCMS software [8]. Data processing was performed according to the work-flow 

described by Ganna et al. (2013).  In short, metabolic feature detection, alignment, grouping, imputation and 

normalization were performed separately for each study. Each feature is characterized by a specific mass-to-charge 

ratio (m/z) and retention time and a single metabolite is normally represented by more than one feature. 

Indiscriminant (id) MS and idMS/MS (or MS
E 

mode) spectra were generated for all features and those with highly 

similar spectra and similar retention time were deemed to be from the same metabolite. Features were then taken 

further into the metabolite annotation and identification procedure.  

 

Metabolite annotation  

Metabolite identification and quantification was performed by using our own in-house reference library or by turning 

to publicly available information databases such as the Human Metabolome Database (HMDB) and Metabolite and 

Tandem MS Database (METLIN). A combination of spectral searching and manual spectral interpretation was used 

for metabolite annotation and results are presented in accordance with the Metabolomics Standard Initiative (MSI).  

Four levels of confidence were considered, in accordance with the Metabolomics Standard Initiative (MSI). This 

approach enabled the successful identification of 136 metabolites in serum samples from participants in the PIVUS 

study. The metabolites detected come from diverse compound classes including amino acids and derivatives, 

peptides, steroids and steroid derivatives, alcohols and polyols, and various compounds related to the lipid 

metabolism such as fatty acids, glycerophospholipids, sphingolipids, and glycerolipids.    

 

Statistical analysis 

Linear regression models were applied to assess the association of each metabolite with DDE levels adjusting for age 

and sex. Only metabolites with a significant p-value after Bonferroni multiple-testing adjustment were reported.  

 

Results and discussion  

Valid measurements of p,p’-DDE were obtained for 992 participants in the PIVUS study. The detection rate was 

99% and the concentrations ranged from 2.13 ng/g lipid to 4260.4 ng/g lipid. The median concentration was 309 ng/g 

lipid which is similar to the median concentrations in previous studies from Sweden and Norway [10, 11] but two 

times lower than those reported in the Belgium and U.S. [12, 13].   
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To examine the link between p,p’-DDE and metabolites we used both a targeted and an untargeted approach. In the 

first approach, we included levels of p,p’-DDE and 136 identified metabolites in the analysis. As shown in Table 1, 

circulating levels of p,p’-DDE were found to be negatively associated with three phosphocholines and one 

phosphoethanolamine and positively associated with oleamide and flavone. In the second approach, which is a more 

explorative approach, we analyzed associations included levels of p,p’-DDE levels and all 8,185 metabolic features 

detected in the study. The results from the second approach showed that higher levels of p,p’-DDE were negatively 

associated with 40 metabolic features.  The majority of these features (36) were identified as 1-Linoleoyl-glycero-3-

phosphocholine (LPC18:2) while three features were identified as 1-Palmitoyl-glycero-3-phosphocholine (LPC16:0), 

1-Palmitoleoyl-glycero-3-phosphocholine (LPC 16:1), and 1-Stearoyl-glycero-3-phosphocholine (LPC 18:0).  

In summary, we performed non-targeted metabolomics in a large number of participants to study the effects of p,p’-

DDE on human metabolic profiles. We found levels of p,p’-DDE to be related to a number of phospholipid 

metabolites involved in key metabolic process such as cell signaling, energy regulation, and membrane composition. 

These findings suggest that p,p’-DDE may affect human lipid metabolism and which might have human health 

implications. 

 

 

Table 1. Metabolites significantly associated with higher levels of DDE 

Metabolites Abbrev. 
Metabolic 

pathway 
p,p’-DDE 

  
 

β (95% CI) p-value 

Oleamide  
Phospholipid 

biosynthesis 
0.06 (0.03, 0.08) 0.00019 

Flavone  
Phenylpropanoid 

biosynthesis 
0.15 (0.08, 0.23) 0.00008 

1-Vaccenoyl-glycero-3-phosphocholine LPC (18:1) 
Phospholipid 

biosynthesis 
-0.34 (-0.52, -0.16) 0.00017 

1-Linoleoyl-glycero-3-phosphocholine LPC (18:2) 
Phospholipid 

biosynthesis 
-0.38 (-0.53, -0.22) 2.54E-06 

1-Eicosadienoyl-glycero-3-phosphocholine LPC (20:2) 
Phospholipid 

biosynthesis 
-0.24 (-0.38, -0.11) 0.00031 

1-Pentadecanoyl-2-oleoyl-sn-glycero-3-

phosphocholine, 1-Palmitoleoyl-2-

arachidonyl-sn-glycero-3-

phosphoethanolamine 

PC (33:1), 

PE(36:1) 

Phospholipid 

biosynthesis 
-0.19 (-0.3, -0.09) 0.00031 
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