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Introduction  

Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in rubber, textiles, as 
well as in plastics for electrical and electronic products for fireproof purposes1. There are 209 different 
congeners and some of them are present in three commercial mixtures (Penta-, Octa-, and Deca-BDE). 
Occurrence and fate of PBDEs and their metabolites in aquatic environment have been widely reported2-5. 
PBDEs have bioaccumulation and biomagnification capacity via food web5-7. Deca-BDE (mainly BDE-209) 
showed a minimal accumulation, hexa- to nona-BDEs showed higher tendency of accumulation in fish muscle 
by dietary exposure8, 9. Penta-BDE is considered generally more toxic than Octa-BDE, whereas BDE-209 is less 
toxic to invertebrates. Penta-BDE may interfere with thyroid and estrogen hormone systems in fish10 and delay 
their embryo hatching11. It was proposed that hydroxylated PBDEs are structurally similar to thyroxine (T4) or 
triiodothyronine (T3), and was involved in the regulation of thyroid function in hypothalamo-pituitary-thyroid 
axis through relevant genes expressions on development12, 13. At high doses, BDE-209 could cause changes in 
the thyroid glands in Fathead Minnows (Pimephales promelas), where it was metabolized to reductive products 
ranging from penta- to octa-BDEs5. PBDE congeners (BDE-28, -47, -99, -100, -153, and -209) could be 
accumulated in Common sole (Solea solea L.) and debrominated congeners of BDE-209 were detected in fish 
tissues14, leading to more toxic debromination or hydroxylation products than their precursor PBDEs15.  

Many studies have been conducted on the metabolic degradation process of BDE-209 in fishes14-17, and most 
of them were carried out in static exposure conditions with single administration dose. However, fish lives in the 
continuous flow of waters and is exposed to a consistent concentration of toxicant. It has been well documented 
that the thresholds or even toxicology of toxicant derived in static exposure differs significantly from those in a 
flowing-through exposure design18, 19. Thus, the objective of this study was to elucidate the process of 
accumulation and debromination of BDE-209 in Japanese medaka when continuously exposed to environmental 
relevant concentrations. 

 
Materials and methods  

Reagents and standards: BDE-209 was purchased from Tokyo Kasei (Tokyo, Japan). The appropriate 
amount of BDE-209 stock solution was diluted in the distilled water and used in the exposure experiments. The 
nominal PBDEs concentrations in exposure setups were 0 (as control), 1, 10, 100 and 1000 ng/L, respectively. 
The measured concentration of BDE-209 was determined daily by SPE-GC/MS when the test solution was 
freshly prepared. No significant differences were observed between nominal and measured concentrations.  

Experimental fish and flow-through exposure protocol: Japnanes medaka (Oryzias latipes) may be used as 
a test organism because it is relatively sensitive to compounds such as endocrine disrupting chemicals19. 
Japanese medaka (Oryzias latipes) of the d-rR strain was provided by the Laboratory of Freshwater Fish Stock in 
Bioscience Center, Nagoya University, Japan. The d-rR strain contains a Y-chromosome linked gene coding for 
a red body color phenotype, allowing the simple determination of sex genotype: males have red phenotype, 
while females have white phenotype. Sexually mature medaka (about 4 months of age) was the offspring bred 
from the same pair of brood stock. Forty males and forty females were then randomly assigned to control and 
each treatment groups. The body weights and lengths were 281-345mg and 47.3±3.6mm, respectively. These 
fish were kept in the following-through de-chlorine tap water of 25 ± 2 °C with a photoperiod of 16:8 h (light: 
dark). The previous experiment19 indicated the 0.01% DMSO did not affect the dissolved in water were not 
significantly different (p>0.05) from those exposed to clean water. 
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Chemical analysis: The analytical protocols used for the analysis of PBDEs in fish muscle were based on 
the procedure described by Luo et al20. The GC/MS analysis was performed on Agilent 6890 GC/5975 MS 
(Agilent Technologies, Madrid, Spain) and selected ion monitoring using a short DB-5ms capillary column (10m 
or 15m) was used for the determination of deca-BDEs (BDE-209, nona-BDEs and octa-BDEs) Under the GC-
MS/MS conditions, the molecular ions ([M]+ or [M+2]+) and fragment ions resulting from the loss of Br2 ([M-
Br2+2]+ or [M-Br2+4]+) were selected as the precursor ions for tandem mass spectrometric analysis. 
 
Results and discussion 

No BDE-209 or its metabolic congeners could be detected in fish muscle of the control group (distilled 
water with 0.01% DMSO). BDE-209 was detected in all treatment groups and the concentration levels ranged 
from 29.3±1.02 ng/g to 53.6±2.54 ng/g wet weight (ww) at 15 days, 11.2±0.42 to 33.4±1.58 ng/g ww at 30 days, 
and 8.19±0.32 to 22.9±1.04 ng/g ww at 60 days, respectively. Comparing to the previous work, the 
concentrations of BDE-209 in the muscle of medaka under continuous exposure were obviously higher than in 
rainbow trout (Oncorhynchus mykiss) which was 5.3±3.0 ng/g ww at the end of the 5 months after oral exposure 
of 7.5-10 µg of deca-BDE/kg per day9.  

Deferent fish species has different metabolic potencies to debrominate BDE-2095-9, 21 and the lower 
brominated BDEs could be accumulated in fish tissues13, 14, 22. Several hexa-BDE congeners were detected in the 
muscle of medaka, indicating BDE-209 debromination. The two frequent hexa-BDEs congeners (BDE-154 and 
BDE-153) that are the major components in commercial penta-BDE were detected at relative lower levels of 
3.19±0.19 and 12±0.58 ng/g ww, respectively only after 30 days exposure to 1000 ng/L BDE-209. It indicated 
that BDE-154 and BDE-153 as intermediates in fish under continuous exposure were negligible, unlike previous 
work where BDE-154 was found to be the most accumulative metabolite of BDE-209 in juvenile fathead 
minnows5, in juvenile rainbow trout and common carp9, as well as in harbor seals along the northwest Atlantic23.  

It was unexpected that BDE-155, the hexa-BDEs congener that has rarely been reported in fresh fish3, 24, 25 
and marine mammals26 was detected in present work. Concentration level of BDE-155 ranged from several ng/g 
ww to a maximum of 178±8.2 ng/g ww and was obviously higher than that of BDE-154. Since BDE-155 is 
present in commercial penta-BDE mixtures27 (about 0.2-0.7%), the occurrence of BDE-155 in medaka suggested 
that it might be also excreted into environmental media as an intermediate of biological transformation from 
BDE-209. Congeners of penta-BDEs (BDE-100 and BDE-99) were detected at concentration levels of 46.4±2.1 
and 9.9±0.58 ng/g ww in exposure group (100 ng/L) at 30 days, while BDE-183 was not detected in present 
study, as it could rarely detected in other fish samples3, 21, 28. Previous work has shown that BDE-183 could 
easily debrominated to BDE-154 and another unidentified hexa-BDE in carp tissue21, which may explain the 
absence of this congener in fish. The congener pattern of PBDEs showed only slight difference among treatment 
groups (Fig. 1) illustrating independent of dose. Obviously, this pattern was not the same as those found in other 
biota or commercial mixtures of BDEs. For sample, the ratio of BDE-99 to BDE-47 is nearly 2:1 in the 
commercial penta-BDE mixtures29, about 1:2 in human milk30, and only 1:0.65 in medaka. It was an indication 
that lower brominated BDEs may have slower elimination rates in fish.  
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Accumulation and debromination of PBDEs in fish muscles depended on the exposure concentration and 
time. The BDE-209 concentration profile in fish muscle (Fig. 2a) showed an exponential increase with 
increasing exposure concentrations from 1 to 100 ng/L, but reached a steady state from 100 to 1000 ng/L. On the 
other hand, highest concentration of BED-209 in fish muscle occurred at 15days, followed by decreasing to a 
constant level (Fig. 2b). The dose-dependent BDE-209 concentration profile in fish muscle (Fig. 2c) was 
different from that of BDE-209. At 15 days and 60 days, BDE-155 had an exponential increase at lower doses 
and decrease at higher doses. However at 30 days, BDE-155 showed constant increase from 1 to 1000 ng/L. 
From Figure 2d, it could be seen that the body burden was higher before 30days and decreased to a constant 
level, as the same as that for BDE-209. The results indicated that BDE-155 might be a transitional metabolite of 
BDE-209 and its body burden was adjusted by certain accumulation/elimination mechanism. The muscle 
concentration profile of BDE-47 was noticeably different from those of BDE-209 and BDE-155. After 60 days, 
concentration of BDE-47 decreased with the time under the exposure of BDE-209 at 100 ng/L (Fig. 2e and 2f), 
indicating that debromination and elimination of BDE-47 in fish might have reached a steady state after 60 days. 
This observation was similar to those of previous work, indicating that BDE-47 might be persistent spices in fish 
muscle31. In general, BDE-209 appeared to be more readily metabolized to lower brominated congners, but its 
metabolic process and persistent species in fish might be different from other terrestrial species14, 32 and the time 
sequence could be seen by comparing Fig. 2b, 2d and 2f.  
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Fig. 2  
The time dependent accumulation of BDE-209 in the medaka was fitted to a one-compartment clearance-

volume toxicokinetic model usingan iterative, nonlinear least-squares regression program35:  
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where Ct: BDE-209 concentration in the muscle at time t; Kabs: first-order absorption rate constant; Kelim: first-
order elimination rate constant; F: bioavailability; C: exposure concentration. Secondary parameters used for 
calculation included the area under the whole-body concentration-time curve extrapolated to infinity and the 
terminal elimination half-life (t1/2). The half-life of a chemical from two concentration levels separated by a 
time interval was calculated according to the equation: 
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When absorption and elimination of BDE-209 (other congeners) reached to steady state in the flow-through 
condition, the following equation was used: 
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 The highest concentration of BDE-209 was detected in the fish muscle tissues at 30dwhen the absorption 
and elimination of BDE-209 reaching a steady state. The result was in line with the predication of uptake and 
elimination of BDE-209 based on the one-compartment toxicokinetic model that was used for BDE-4733. Results 
of preliminary analysis indicated that a one-compartment model provided a better fit with the data compared to a 
two-compartment model. The BDE-209 half-life of 16.5 to 19.4 days was reported based for medaka under the 
flowing-through exposure condition, which was different from those for rat and gray seals that were 
experimentally orally dosed, i.e., 2.5 days34 and 8 to 13 days35 or 6.8 to 15 days in human serum in 
occupationally exposed workers36.  
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We conclude that BDE-209 was accumulated and debrominated to lower congeners in Japanese medaka. 
Predominant debrominated congeners found in medaka muscles included BDE-47, -99, and -155. The body 
burden of BDE-209 and BDE-155 increased with the increase of exposure time and reached to a steady state, 
while that of BDE-47 reached the highest at end of the exposure (60 days). The half-life of BDE-209 in the 
medaka was 16.5 to 19.4 days. This study suggested that fish may have a different bioaccumulation capacity and 
metabolic pattern from other species, either because of species difference or the manner of exposures. 
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