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Introduction  
We previously established that dioxins were released to the aquatic environment from newly-recognized 
industrial sources such as the production of caprolactam by cyclohexane photonitrosation, and calcium carbide-
based acetylene manufacture1.  Acetylene is a highly reactive, commercially important gas used throughout the 
world in the synthesis of organic raw materials. While the calcium carbide process has been replaced in the 
United States by alternate methods of acetylene manufacture, it remains an important source of acetylene in 
countries such as China, India, and Japan with ready access to inexpensive coal- the source of coke for calcium 
carbide. While Japan has now established dioxin water quality standards for the acetylene and caprolactam 
industries, the importance of calcium carbide-based acetylene manufacture2,3 and the large-scale production of 
caprolactam4 in Asian-Pacific countries prompted us to re-examine the chemistry of dioxin formation in 
acetylene and caprolactam manufacture to highlight the potential for these waste streams to release dioxins to the 
aquatic environment. 
This paper also examines triclosan (2,4,4’-trichloro-2’-hydroxydiphenyl ether, CAS No.3380-34-5), as an 
important source of dioxins to aquatic systems.  This broad-spectrum antibacterial agent is manufactured and 
used throughout the world, and has become a ubiquitous contaminant of surface waters5,6. Triclosan 
manufactured outside of the United States and Europe may be contaminated with dioxins as synthesis impurities 
7,8. Triclosan also undergoes chlorination in wastewater treatment systems and photodegradation to form 
multiple dioxin species9-11. 
 
Materials and methods  
In 2001, the Japanese Ministry of the Environment (JMOE) conducted an in-depth survey of acetylene 
manufacturing, collecting and analyzing samples for dioxins from ten different acetylene manufacturers. The 
manufacturers produced acetylene by either the Dry or Wet calcium carbide process, and purified the acetylene 
by reacting it with hypochlorite or sodium hypochlorite (HClO or NaClO); chlorine water (Cl2); ferric chloride 
and copper chloride (FeCl3 and CuCl2); or by an unspecified bleaching powder. The JMOE collected samples 
from the source of industrial water used by each facility, and from each waste stream in the purification 
processes. Acetylene purification waste samples were analyzed for 9 dioxin congeners (polychlorinated 
dibenzodioxins, PCDD) and 11 furan congeners (polychlorinated dibenzofurans, PCDFs). For each of three 
caprolactam manufacturers, the JMOE collected five samples including industrial water, wastewater from the 
dehydration process, wastewater from the neutralization process, wastewater from the exhaust gas cleaning 
process, and combined wastewater (see Ref. 1 for a process flow diagram). Caprolactam waste samples were 
analyzed for dissolved and suspended PCDD/PCDFs. PCDD/Fs in both acetylene and caprolactam wastes were 
analyzed by the methods of the Japanese Industrial Standards Committee12.  
 
Peer-reviewed scientific literature provided the information on Triclosan. 
 
Results and discussion 
Dioxin formation in calcium-carbide acetylene manufacturing 
Calcium carbide (CaC2) is produced from the high-temperature reaction of calcium oxide (CaO) and coke (C) in 
an electric arc furnace. The calcium carbide is subsequently reacted with water to form acetylene (C2H2), 
yielding calcium hydroxide (Ca(OH) 2) as a waste product. Acetylene’s major impurities are phosphine (PH3) 
and hydrogen sulfide (H2S); these are removed in various oxidative purification processes that introduce chlorine. 
PCDD/Fs have been detected in acetylene waste streams in Japan1, Taiwan13, Brazil14, and Korea15. While the 
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import triclosan effectively regulate PCDD/F levels, the PCDD/F content of manufactured triclosan represents a 
potentially important source of dioxins to the aquatic environment.  
In the US, the majority of triclosan is released from household water systems to wastewater treatment facilities20. 
Once released to the aquatic environment, triclosan can undergo photodegradation to form 2,8-
dichlorodibenzodioxin9. Triclosan can also react with chlorine in treated water to form derivatives that may 
subsequently undergo UV-mediated conversion to 2,3,7-trichlorodibenzodioxin, 1,2,8-trichlorodibenzodioxin, 
and 1,2,3,8-tetrachlorodibenzodioxin18. It has been estimated that the PCDD load from triclosan and its 
degradation products may be 46 to 92 g-TEQ/year, or approximately 1.8 to 3.7% of air emissions18. These 
estimates do not account for the potential presence of synthesis impurities, and thus the true loading of PCDD/Fs 
from triclosan to the aquatic environment is unknown. 
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