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Introduction  

Exposure to the polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs) and 
related dioxin-like compounds (DLCs) increases the risk of cancer and interfere with the function and 
development of the nervous, immune and reproductive systems[1-3]. Ah Receptor (AhR) is a member of the 
bHLH-PAS family of DNA-binding proteins, which activates gene expression in a ligand-dependent manner[4]. 
Upon activation by dioxin and DLCs, AhR translocates to the nucleus where it forms a heterodimer with ARNT, 
binds to xenobiotic responsive elements (XRE) in the promoter of its target genes, and initiates transcription [5].   

As an important functional enzyme in cholinergic neurotransmission, acetylcholinesterase (AChE) plays 
vital roles in advanced brain functions[6]. It was reported that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDD) can interfere with the development of the central cholinergic system[7], so that dioxins may act as a 
neuroendocrine disruptor. Moreover, the effects of TCDD on brain AChE are related to the alterations in thyroid 
development[7]. Recent research showed that AChE is not only a target of organophosphorus pesticides, but also 
of many other kinds of chemicals[8]. Generally, activity of AChE can be affected either by direct inhibition of 
enzymatic activity or by suppression of gene transcription[9]. Our previous study showed that TCDD can reduce 
AChE activity via transcriptional down regulations, mediated by AhR in SK-N-SH neuroblastoma cells[10]. 
Given that a large number of natural and synthetic AhR ligands (agonist and antagonists) have been identified 
and characterized[11], whether they could affect AChE expressions through the common mechanism, by 
activation of AhR and AhR-dependent signaling pathway, remains to be investigated.  
 
Materials and methods 
Cell culture. SK-N-SH, a cell line derived from human neuroblastoma cells, was purchased from the cell resource 
center of the Chinese Academy of Medical Sciences. These cells express both AChE and muscarinic acetylcholine 
receptor[12]. Cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) and incubated at 37 °C in a water-saturated 5% CO2 incubator.  
Chemical treatment. The cells were seeded in 6-well-plates at 500,000 cells per well 24 hours before exposure to 
dioxin or other drug treatment for AChE activity determination. The most potent congener of dioxins, TCDD was 
employed at low concentrations of 10-9 M. CH223191, an inhibitor of the AhR-dependent pathway[13], was 
employed at 10-6 M. 1,2,3,7,8-PCDD, 2,3,7,8-TCDF, 2,3,4,7,8-PCDF, and 2,3,7,8-TBDD were employed 
respectively at concentrations of 10-9 M, 10-8 M, 3×10-9 M and 10-9 M. The solvent dimethyl sulfoxide (DMSO) 
was present at 0.1% for all treatments. Treated cultures were compared with cultures exposed to 0.1% DMSO 
alone or other indicated groups.  
Luciferase assay. Cells were transfected with human AChE promoter-reporter construct (pAChE-Luc) together 
with cDNA encoding the β-galactosidase gene at 10:1 weight ratio. Twenty-four hours later, cells were treated 
with chemicals as described in the preceding Chemical treatment section. For luciferase measurement, sample 
wells were washed twice with phosphate-buffered saline, followed by the addition of cell lysis buffer (Promega) 
and shaking of the plates for 10 min at room temperature to allow cell lysis. Insoluble material was removed by 
centrifugation, and the resulting lysates were transfered to white 96-well microplates for measurement of 
luciferase activity using a TECAN Infinite F200 Pro luminometer with automatic injection of Promega stabilized 
luciferase reagent.  
Determination of AChE enzymatic activity. AChE enzymatic activity was determined according to the method of 
Ellman[14], modified by the addition of 0.1 mM tetra-isopropylpyrophosphoramide (iso-OMPA), an inhibitor of 
butyrylcholinesterase (BChE). After 6 to 48-hour-exposure, cells were collected and total protein extraction was 
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Figure 1. Effects of dioxin and dioxin-like compounds on the neuronal AchE activity, promoter activity and 

mRNA levels; Values, calculated as % of solvent alone, were expressed as Mean±SEM, n=4, each with triplicate 
samples, * p<0.05, significant difference as compared to DMSO-treated controls, was determined by ANOVA.  

The finding may pave the way for new research to understand the deleterious effects of dioxins on 
advanced brain functions. All tested AhR agonists (dioxin and dioxin-like) could suppress neuronal AchE 
activity. The results support the part of AhR-dependent pathway in manipulating the expression of AchE activity. 
Explorations on the transcriptional regulation of AChE by DLCs or other AhR ligands are worthy of further 
investigations. Inhibition of AChE activity has been used as an indicator of organophosphorus insecticide (OP) 
exposure, because OPs irreversibly inhibit the activity of AChE by binding to its catalytic residue[9]. Our study, for 
the first time, disclosed that dioxin and DLCs could affect cholinergic neurotransmission system through a 
common and novel mechanism-AhR mediated transcriptional down-regulation of the neuronal AchE activity. 
These findings can establish a foundation for the application of AchE activity as an indicator of dioxin and DLCs 
exposure.  
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