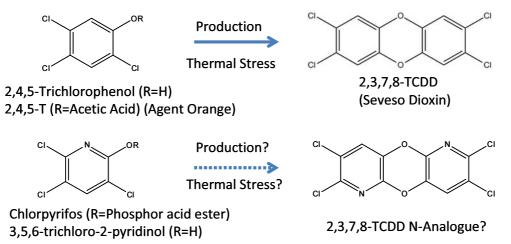
# DIOXIN-LIKE ACTIVITY MEASURED BY DR CALUX<sup>TM</sup> FROM THERMAL TREATMENT OF CHLORPYRIFOS AND OTHER POTENTIAL PRECURSORS OF THE PYRIDINE ANALOGUE OF 2,3,7,8-TCDD

Behnisch P<sup>1</sup>, Sakiyama T<sup>2</sup>, Weber R<sup>3</sup>\*, Brouwer B<sup>1</sup>, Nakano T<sup>4</sup>

<sup>1</sup>BioDetection Systems BV (BDS), Science Park 406, 1098 XH Amsterdam, The Netherlands;

<sup>2</sup> Osaka City Institute of Public Health and Env. Sciences, Tohjo-cho 8-34, Tennoji-ku, Osaka 543-0026, Japan;


<sup>3</sup> POPs Environmental Consulting, Ulmenstrasse 3, 73035 Göppingen, Germany;

<sup>4</sup>Osaka University, Research Center for Environm. Preservation 2-5 Yamadaoka, Suita, Osaka 565-0871, Japan

#### Introduction

Pesticide production, use and disposal have contributed significantly to Dioxin emissions in the past<sup>1-5</sup>. However, also in a recent monitoring program of current used pesticide formulations in Australia PCDD/F were detected in all assessed formulations<sup>4</sup> and formations of PCDD/F from sunlight exposure of selected pesticide formulations5. From a historic perspective the two chemicals with the highest dioxin release into the environment were 2,4,5-trichlorophenoxy acetic acid (2,4,5-T) and pentachlorophenol (PCP)<sup>1,2,6</sup>. The production and use of 2,4,5-T and 2,4,5-trichlorophenol – the precursor of 2,3,7,8-TCDD - resulted in large contaminated area during the Vietnam War (total release of 366 to kg TEQ)<sup>6</sup>.

A current used high production volume pesticides – chlorpyrifos and chlorpyrifos-methyl – have as chlorinated aromatic moiety the pyridine-analogue of 2,4,5-trichlorophenol (3,5,6-trichloro-2-pyridinol) (Fig. 1). Therefore, these pesticides are potential precursors of the pyridine-analogues of 2,3,7,8-TCDD (2,3,7,8-TCDD-Py; Fig.1). At the former DIOXIN conferences we reported on the formation of 2,3,7,8-TCDD-py<sup>7,8</sup> from chlorpyrifos, chlorpyrifos-methyl and the major degradation product of chlorpyrifos, 3,5,6-trichloro-2-pyridinol (TCPy) in a temperature range between 250°C and 380°C.<sup>7,8</sup> DR CALUX<sup>TM</sup> measurements showed a dioxin-like activity of the reaction products. In the current study we report further results from thermal experiments (300 to 440 °C) with chlorpyrifos, chlorpyriphos-methyl and the major degradation product of chlorpyrifos, the 3,5,6-trichloro-2-pyridinol (TCPy). For the first time a preliminary estimate of the bio-toxicity (REP) was performed by a semi quantification of 2,3,7,8-TCDD-py via 2,3,7,8-TCDD standard and DR CALUX<sup>TM</sup> measurements.



**Figure 1:** Formation of 2,3,7,8-TCDD from 2,4,5-T/2,4,5-TCP and potential formation of the 2,3,7,8-TCDD pyridine analogue from Chlorpyrifos or 3,5,6-trichloro-2-pyridinol (used in Chlorpyrifos production).

#### Materials and methods

*Chemicals and thermal treatment:* Chlorpyrifos and 3,5,6-trichloro-2-pyridinol was purchased as chemical standards from Dr. Ehrenstorfer GmbH (Augsburg, Germany) and chlorpyrifos-methyl from Wako Pure

Chemicals (Osaka Japan). All pyrolysis experiments were carried out in sealed brown glass ampoules (10 ml; air) with about 0.5 mg of respective chemical at temperatures between 300°C and 440°C in electric furnace (Eyela TMF-3200; Tokyo Rikakikai, Tokyo, Japan). After cooling to room temperature, ampoules were opened and reaction products extracted with toluene.

## GC/MS analysis

The procedure for the GC/HRMS analysis by Osaka City institute is described in detail previously<sup>1,2</sup>. Briefly, a GC-TOF-MS: 7890A (Agilent) with a 30 m DB-5MS (ID: 0.25 mm), a JMS-T100GC (JEOL), a GC/HRMS: 6890GC (Agilent) with a 60 m HT-8PCB (ID: 0.25 mm), a Autospec Ultima (micromass) was used for analysis. Temp. program DB-5MS: 130°C (1 min); 10°C min to -320°C (10 min hold). HT-8PCB: 130°C (1min) - 30°C/min to 200°C; 20°C/min to 310°C (hold). The TOF/MS was operated at a resolution >5,000 (50% valley) and HRMS at a resolution >10,000. Further a 450-GC/320-MS (Bruker) 320-MS was used with a 10 m Rapid-MS column for MS spectra and screening. 2,3,7,8-TCDD-py concentrations were semi-quantitatively determined using a 2,3,7,8-TCDD <sup>13</sup>C-standard.

# **DR** CALUX<sup>TM</sup> bioanalysis:

The procedure for the DR CALUX<sup>TM</sup> by BioDetection System (BDS) in Amsterdam is described in detail previously<sup>1,2</sup>. Briefly, the bioassay is performed using a rat hepatoma H4IIE cell line stably transfected with an AhR-controlled luciferase reporter gene construct. Cells were cultured in  $\alpha$ -MEM culture medium supplemented with 10% (v/v) FCS under standard conditions (37°C, 5% CO<sub>2</sub>, 100% humidity). Cells were exposed in triplicate on 96-well micro-titer plates containing the standard 2,3,7,8-TCDD calibration range, the additional 2,3,7,8-TCDD calibration concentrations, a DMSO blank, an internal reference material and various samples extracts at multiple dilutions (e.g. sediment, foodstuffs, feeding stuffs). Following a 24 hour incubation period, cells were lysed, a luciferine containing solution was added and the luciferase activity was measured using a luminometer equipped with 2 dispensers. For this procedure the samples were transferred from the toluene fraction to DMSO and applied in the assay without further clean-up.

## **Results and discussion**

# Screening of dioxin like toxicity by DR-CALUX of thermally treated chlorpyrifos, chlorpyrifos-methyl and 3,5,6-trichloro 2-pyridinol standards

All thermally treated pesticide samples for analysis of dioxin-like toxicity were analysed by DR CALUX<sup>TM</sup> by BioDetection Systems (Amsterdam, Netherlands).

For an assessment of the formation potential of chlorpyrifos, chlorpyrifos-methyl and 3,5,6-trichloro 2-pyridinol (TCPy) (major degradation product of chlorpyrifos in environment) the chemicals where heated at the respective conditions (temperature, time) in individual ampoule experiments.

Measurable concentrations of DR CALUX<sup>TM</sup> activities were formed from chlorpyrifos, chlorpyrifos-methyl and 3,5,6-trichloro 2-pyridinol (TCPy) after already 15 minutes at 300°C (table 1). DR CALUX<sup>TM</sup> activity increased for chlorpyrifos with increasing temperature by ca. 5-times from 300°C to 340°C and than ca. 10-times again to 380°C. The GC/HRMS analysed concentration of the sum of cis/trans 2,3,7,8-TCDD-Py increased by a factor of 25-times from 340°C to 380°C (table 1/table 2).

For chlorpyrifos-methyl the DR CALUX<sup>TM</sup> activity increased from 340°C to 380°C within 15 minutes reaction time ca. 170-times (table 1/figure 2), while the sum of cis/trans 2,3,7,8-TCDD-Py increased by a factor of ca. 500-times.

For 3,5,6-trichloro 2-pyridinol (TCPy) the DR CALUX<sup>TM</sup> activity increased from 300°C to 340°C (within 15 minutes reaction time) ca. 60-times. Interestingly, both the DR CALUX<sup>TM</sup> activity and the sum of cis/trans 2,3,7,8-TCDD-Py increased at the same intensity of ca. 7-times from 340°C to 380°C to a finally stable level of 200 to 400 ng BEQ/mg level. (table 1/figure 2).

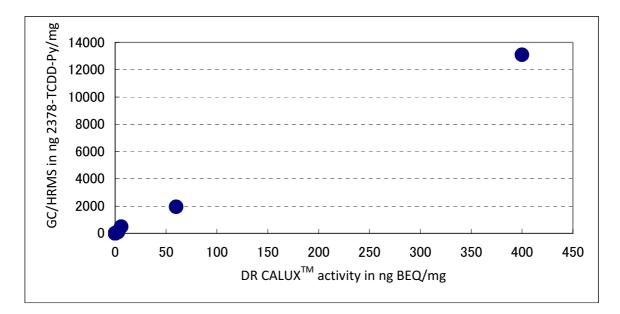
In table 1 also the concentrations analysed by GC/HRMS for the sum of cis/trans 2,3,7,8—TCDD-py (in ng/mg) of these thermally treated chlorpyrifos, chlorpyrifos-methyl and 3,5,6-trichloro 2-pyridinol standards are reported. The experiments show that the potential of chloropyrifos and chlorpyrifos-methyl to form the DR CALUX<sup>TM</sup> activity was considerably lower compared to 3,5,6-trichloro-2-pyridinol (table 1/ figure 2):

From the first semiquantification of 2,3,7,8-TCDD-py using <sup>13</sup>C-2,3,7,8-TCDD as standard (with different retention time<sup>7</sup> and possibly differences in the response in the MS): In case we consider that the sum of cis/trans 2,3,7,8-TCDD-py caused all AhR-activity measured by DR CALUX<sup>TM</sup> and consider a measurement uncertainty from using 2,3,7,8-TCDD as standard to measure 2,3,7,8-TCDD-py of a factor of 3, then a REP-value range between 0.01 to 0.1 can be estimated. This REP would therefore be in the range of PCB 126; with a REP value of 0.08 or the upper estimated range close to the dioxin-toxicity of 2,3,7,8-substituted HexaCDD or HexaCDF<sup>9</sup>.

**Table 1:** Dioxin-like activity measured by DR-CALUX<sup>TM</sup> (in ng BEQ/mg) and concentrations for the sum of cis/trans 2,3,7,8-TCDD-Py by GC/HRMS (in ng/mg) of thermally treated chlorpyrifos, chlorpyrifos-methyl and 3,5,6-trichloro 2-pyridinol standards (Experiment design: 0.5 mg compound, 15 min heating time; DR CALUX: 24 hrs kinetic, direct exposure in 0.8% DMSO)

| Experiment                         | DR CALUX:<br>ng BEQ/mg | GC/HRMS:<br>ng/mg | Approx. REP** |
|------------------------------------|------------------------|-------------------|---------------|
| Chlorpyrifos: 300°C                | 0.057                  | n.a.              |               |
| Chlorpyrifos: 340°C                | 0.26                   | 3.9               | 0.067         |
| Chlorpyrifos: 380°C                | 2.9                    | 97                | 0.030         |
|                                    |                        |                   |               |
| Chlorpyrifos-Methyl: 300°C         | 0.013                  | n.a.              |               |
| Chlorpyrifos-Methyl: 340°C         | 0.035                  | 0.96              | 0.036         |
| Chlorpyrifos-Methyl: 380°C         | 6.0                    | 490               | 0.012         |
|                                    |                        |                   |               |
| 3,5,6-trichloro 2-pyridinol: 300°C | 1.3                    | 73                | 0.018         |
| 3,5,6-trichloro 2-pyridinol: 340°C | 60                     | 1,950             | 0.031         |
| 3,5,6-trichloro 2-pyridinol: 380°C | 200-400                | 13,100            | 0.031         |
| 3,5,6-trichloro 2-pyridinol: 400°C | 190                    | n.a.              |               |
| 3,5,6-trichloro 2-pyridinol: 420°C | 250                    | n.a.              |               |
| 3,5,6-trichloro 2-pyridinol: 440°C | 410                    | n.a.              |               |
|                                    |                        |                   |               |
| Mean REP value                     |                        |                   | 0.032**       |

\*\*Note: The use of an 2,3,7,8-TCDD standard as "internal" standard causes a measurement uncertainty of approx. an factor of 3 since the differences in response in MS of these two compounds are unknown.


#### **Relevance of the findings**

The estimated REP of 0,01 to 0,1 highlight the possible relevance of 2,3,7,8-TCDD-py in respect to Dioxin toxicity when considering the high volume use of these pesticides. This finding needs further assessment considering that chlorpyrifos is a major used pesticide worldwide and can be involved in fires in pesticide productions & storages and in the combustion of post-harvest residues with associated thermal stress for present dioxin and dioxin-like substance precursors<sup>1,2</sup>.

Further assessment at higher temperature is therefore needed to assess also such high temperatures processes.

Considering the 2,3,7,8-TCDD contamination in 2,4,5-T formulations (e-g.Agent Orange) possible dioxin-like contaminants in actual chlorpyrifos pesticide formulations should be considered and assessd.

According to the current data of the combined instrumental analysis and the DR CALUX<sup>TM</sup> assay of the thermal treatments, the assessment for dioxin-like activity of chlorpyrifos (and other pesticides) should in addition to instrumental analysis also be assessed by bio-assays measurements.



**Figure 2:** Comparison of dioxin-like activity measured by DR-CALUX<sup>TM</sup> (in ng BEQ/mg) and concentrations for the sum of cis/trans 2,3,7,8-TCDD-py by GC/HRMS (in ng/mg) of thermally treated chlorpyrifos, chlorpyrifos-methyl and 3,5,6-trichloro 2-pyridinol standards. (**please note:** the uncertainty in the measured 2,3,7,8-TCDD-Py concentration using 2,3,7,8-TCDD standard).

## Acknowledgements

No specific funding has been received for this study.

#### References

- 1. Weber R, Gaus C, Tysklind M, Johnston P, et al. (2008) Environ. Sci. Pollut. Res. 15: 363-393
- 2. Masunaga S, Takasuga T, Nakanishi J (2001) Chemosphere, 44: 873-885
- 3. Weber R, Tysklind M, Gaus C. (2008); Env Sci Pollut Res 15: 96–100
- 4. Holt E, Weber R, Stevenson G, Gaus C. (2010) Environ. Sci. Technol. 44, 5409–5415
- 5. Holt E, Weber R, Stevenson G, Gaus C (2012) Chemosphere 88: 364–370
- 6. Stellman JM, Stellman SD, Christian R, Weber T, Tomasallo C (2003) Nature 422: 681–687 Sakiyama T, Weber R, Behnisch P, Nakano T (2011) Organohalogen Compounds 73, 146-149.
- 7. Sakiyama T, Weber R, Behnisch P, Nakano T (2012) Organohalogen Compounds 74, 1441-1444.
- 8. Sakiyama T, Weber R, Behnisch P, Nakano T (2011) Organohalogen Compounds 73: 146-149.
- 9. Behnisch PA, Hosoe K, Sakai S (2003). Environmental International 29 (6), 861-879.