A PRELIMINARY STUDY OF RISK ASSESSMENT FOR POTENTIAL PCBs CONTAMINATED SITE IN KOREA

Yoon JK¹, Noh H-J¹, Kim HS¹, Kim TS¹, Lee M-J¹, Kim D-H¹, Yu S-J¹, Hwang S-I²*

¹National Institute of Environmental Research, Environmental Research Complex, Seo-Gu, Kyoungseo-Dong, Incheon 404-708, Republic of Korea;²Korea Environment Institute, 215 Jinheungno, Eunpyung-Gu, Seoul, South Korea

Introduction

Polychlorinated biphenyls(PCBs) is generally environmentally persistent and can heavily contaminate soil. In this study, we suggested a preliminary risk assessment procedure for potential PCBs-contaminated sites in Korea.

Materials and methods

Site selection and soil sampling

One site (a site within insulating oil recycling facility) was selected for this study from several potential PCBscontaminated sites in South Korea (Figure 1)¹. Six points were sampled with eight depth intervals (48 sampling in total). Sampling depths were $0\sim15$ cm for topsoil, and, for subsurface soil, $15\sim30$ cm, $30\sim50$ cm, $50\sim70$ cm, $70\sim100$ cm, $100\sim130$ cm, $130\sim160$ cm,and $160\sim200$ cm.

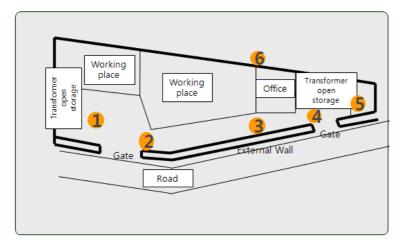


Figure 1. The site map and location of sampling points

Soil characteristics

Soil pH was analyzed using Korean Soil Contamination Public Testing Protocol² and organic matter content was measured through Walkley-Black method³. Texture was analyzed using pipette method³ and determined using USDA texture triangle.

PCBs contamination characteristics

Three analyses (i.e., total PCBs, homologue, and congener) were conducted to identify the PCBs contamination characteristics in the site. Total PCBs were analyzed using Korean Persistent Organic Pollutant Public Testing Protocol⁴ and Endocrine DisruptingChemical Analysis Protocol⁵. Homologue and congener analyses were conducted using EPA 8082a method.

Preliminary risk assessment

A couple of preliminary risk assessments were conducted using total PCBs and congener analysis, respectively. Using total PCBs data, a preliminary risk assessment was conducted via Japanese GERAS risk assessment tool⁶. Another preliminary risk assessment was conducted via CSOIL model⁷using congener analysis data.

Results and discussion

Soil characteristics

The range of soil pH in the site was 4.5 to 6.4 and that of soil organic content was 0.2 to 3.4 percentages (Table 1). Soil texture was mostly sandy loam and its clay content was 8 to 13 percentages.

Sampling		Organic	Soil Texture			
points	Soil pH	matter content (%)	Sand(%)	Silt(%)	Clay(%)	Texture
1	5.62	3.42	65	25	10	Sandy loam
2	5.43	0.20	61	31	8	Sandy loam
3	6.44	1.05	62	28	11	Sandy loam
4	5.00	1.08	61	27	13	Sandy loam
5	6.08	0.80	60	28	12	Sandy loam
6	4.50	0.90	45	32	23	Loam

Table 1. Soil characteristics of the site

PCBs contamination characteristics

The PCBs were detected in three sampling points among six sampling points and the concentration of total PCBs ranged from N.D. to 0.744 mg/kg (Table 2). Furthermore, PCBs were detected down to 50 cm depth, probably suggesting that concrete pavement within the site might limit PCBs spreading into deeper subsoil.

Table 2. Total PCBs concentrations of the site

Sampling points	Soil depth	Conc. of total PCBs (mg/kg)	Sampling points	Soil depth	Conc. of total PCBs (mg/kg)
1	0~15cm	0.241	politio	0~15cm	N.D.
	15~30cm	N.D.		15~30cm	N.D.
	30~50cm	N.D.		30~50cm	N.D.
	50~70cm	N.D.		50~70cm	N.D.
	70~100cm	N.D.	4	70~100cm	N.D.
	100~130cm	N.D.		100~130cm	N.D.
	130~160cm	N.D.		130~160cm	N.D.
	160~200cm	N.D.		160~200cm	N.D.
2	0~15cm	N.D.		0~15cm	0.097
	15~30cm	N.D.	-	15~30cm	0.022
	30~50cm	N.D.		30~50cm	N.D.
	50~70cm	N.D.		50~70cm	N.D.
	70~100cm	N.D.	5	70~100cm	N.D.
	100~130cm	N.D.		100~130cm	N.D.
	130~160cm	N.D.		130~160cm	N.D.
	160~200cm	N.D.		160~200cm	N.D.
3	0~15cm	0.744		0~15cm	N.D.
	15~30cm	0.277	6	15~30cm	N.D.
	30~50cm	0.001		30~50cm	N.D.
	50~70cm	N.D.		50~70cm	N.D.
	70~100cm	N.D.		70~100cm	N.D.
	100~130cm	N.D.		100~130cm	N.D.
			1		

130~160cm	N.D.	130~160cm	N.D.	
160~200cm	N.D.	160~200cm	N.D.	

Concentrations of each PCB homologue group for three sampling points are listed in Table 3. Since penta-, hexa-, hepta-, and octa- PCB homologues were detected, dioxin-like PCB congeners appears to be present in the site. Furthermore, the PCB congener analysis shows that congener distribution patterns of three sampling points were very similar to those of Aroclor 1254 and 1260 (Figure 2). Both homologue and congener analyses indicates that dioxin-like congeners can be present in the site.

Table 3. Concentration of each PCB homologue group for three sampling points

Homologua	SA-1	SA-3	SA-5
Homologue	(0-15cm)	(0-15cm)	(0-15cm)
Groups	(µg/kg)	(µg/kg)	(µg/kg)
1 chlorine	0	0	0
2 chlorines	0	0	0
3 chlorines	0	0	0
4 chlorines	0	0	0
5 chlorines	58	80	6
6 chlorines	94	256	45
7 chlorines	85	333	48
8 chlorines	4	75	1
9 chlorines	0	0	0
10 chlorines	0	0	0

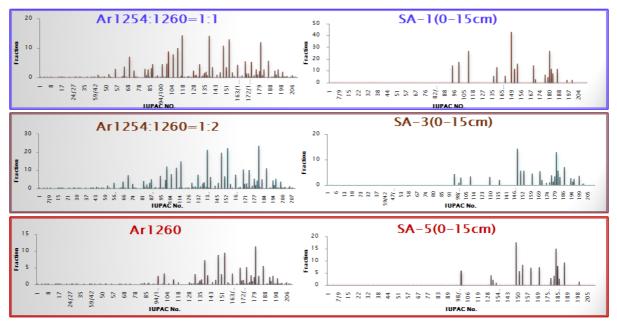


Figure 2. Distribution patterns of PCB congeners for three sampling points

Preliminary risk assessment

(Exposure route analysis) Maximum concentration (0.744 mg/kg) among total PCBs concentration values in the site was selected for the PCBs concentration in the site for GERAS model. Also, for CSOIL model, concentrations of seven PCB congeners were used for the PCBs concentration in the site. Since groundwater in the site was not used for drinking, exposure routes were determined to dermal contact, inhalation, and ingestion, with taking into account of site characteristics and receptors together. Data for soil characteristics were from measured data in the site, while values of other exposure factors were chosen from values of the Korean Guideline for Soil Risk Assessment and default values of the models used.

(Toxicity assessment and risk characterization) Preliminary risk assessment was reviewed mostly with regard to carcinogenic risk. Acceptable risk was 10^{-5} in GERAS model and 10^{-4} in CSOIL model. Its value can be chosen from the range from 10^{-4} to 10^{-6} in the Korean Guideline for Soil Risk Assessment. Using the GERAS model, we conducted the risk assessment for total PCBs analysis. We found that carcinogenic risk in the site ranged from 3.9×10^{-6} to 2.0×10^{-7} , much smaller than acceptable risk (1.0×10^{-5}) . Furthermore, using the CSOIL model, we conducted the risk assessment for PCB congener analysis. We found that risk index was 0.03, much lower than acceptable risk index (1.0).

Acknowledgements

This research was jointly conducted by both National Institute of Environmental Research (NIER) and Korea Environment Institute (KEI). The authors are profoundly gratefulto RIVM and AIST for their support in providing risk assessment models.

References

1. NIER (2009); Risk Assessment for PCBs Contaminated Site

- 2. Ministry of Environment (2002); Korean Soil Contamination Public Testing Protocol
- 3. SSSA (1996); Methods of Soil Analysis
- 4. NIER (2007); Korean Persistent Organic Pollutant Public Testing Protocol
- 5. NIER (2002); Endocrine Distrupting Chemical Analysis Protocol
- 6. 日本産業技術総合研究所ソフトウェア, (2006), 地圏環境評価システム GERAS-

1&2 (重金属、有機化合物) ver.1.2.

7. RIVM (2001); Evaluation and revision of the CSOIL parameter set, 711701 021