
COMMON METHODOLOGICAL ERRORS IN DIOXIN RESEARCH: 

ASSUMPTIONS ABOUT CONFOUNDING, MISCLASSIFICATION, AND 

STATISTICAL ANALYSES 
 
Scott LLF* 

 
Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, MN, 

USA 

 
Introduction 
Over the last decade novel advances in epidemiologic methods have revitalized attempts to disentangle intricate 

causal relationships between environmental exposures and disease. Regrettably, few of these methodological 

improvements have been applied to human dioxin research, with most studies utilizing classical epidemiological 

methods and failing to address statistical and model assumptions that are typically not satisfied. Here, we 

reviewed the human dioxin literature to identify the most common epidemiological mistakes in dioxin research 

and discuss how current thinking about epidemiologic methods can be used to improve the quality of these 

studies. 

 
Materials and Methods 

A search of the peer-reviewed literature was conducted to identify epidemiological studies evaluating the 

association between exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and/or dioxin-like compounds and 

health outcomes.  Various combinations of keywords and phrases – including but not limited to ‘epidemiology,’ 

‘health effects,’ ‘mortality,’ ‘cancer,’ ‘incidence’, ‘exposure,’ ‘dioxin,’ and ‘TCDD’ – were used to identify 

relevant articles published in English and indexed in online databases (i.e. PubMed, Medline, Toxline, etc).  

Applicable studies were also identified by conducting general internet searches and reviewing secondary 

references from relevant studies and annual indices of selected journals.  The Methods and Discussion/Conclusion 

sections of each article were reviewed to ascertain study limitations/methodological errors and any 

acknowledgement and/or evaluation of the impact of these imperfections on the results. 

 

Results and Discussion 

A prominent shortcoming of the epidemiological dioxin literature is the presence, and often lack of 

acknowledgement, of confounding.  More specifically, studies of dioxin exposure and health outcomes do not, 

and frequently cannot, isolate the true effect of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) from 

the effects of other dioxin-like compounds and/or mixtures of other chemical exposures.  Although more recent 

studies have begun to examine the effect of dioxin mixtures on health outcomes,1-7 
a large majority of 

epidemiological studies have focused only on TCDD as the chemical exposure of interest.8
  
For instance, of the 

13 studies evaluating cardiovascular disease (CVD) mortality in occupational cohorts, only five assessed the 

combined impact of multiple congeners on disease and just three of these estimated exposure using total toxic 

equivalencies (TEQ), posing a critical problem when making causal inferences about the TCDD-CVD 

relationship. 

 
Additionally, most epidemiological studies of dioxin exposure examine the mortality experience of exposed 

populations.  While these types of studies can be useful, caution should be exercised when interpreting the study 

results, particularly if mortality rates in the population of interest are compared solely to the rates of an external 

referent population.   In particular, comparison of workers to the general population can result in confounding 

since employed workers are often healthier and have differing characteristics compared to the general population.  

Consequently, the use of nested case-control, Poisson or time-dependent proportional hazards regression models 

is suggested for mortality cohort studies as these methods utilize an internal referent population.  Notable 

examples of these approaches have been employed in only a few dioxin studies,5,9-15 
but suggest these methods 

may be useful techniques for managing specific aspects of confounding in dioxin research, particularly if the 

internal referent population is a suitable substitute population with which to compare the exposed individuals. 
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In general, human dioxin studies over-adjust for a multitude of covariates or, more frequently, neglect to adjust 

for confounders specific to the disease of interest.  A potential solution to this problem, and a new technique 

with which to help identify possible confounders, is the use of directed acyclic graphs (DAGs).  DAGs are 

diagrams based on graph theory that do not contain directed cycles and can be used as a tool to determine which 

variables to include in explicit exposure-disease epidemiological models.  DAGs are constructed based on a 

priori assumptions about the causal relationships of identified characteristics and can help refine epidemiologic 

methods based on specific study goals by guiding data collection, analysis and modeling methods and answering 

causal questions for different causal models.  An example of a DAG describing the relationship between 

exposure to TCDD, ischemic heart disease, and a multitude of other factors that may affect exposure and disease 

incidence is presented in Figure 1. 

 

Figure 1: Directed Acyclic Graph for Identifying Possible Confounders of the Relationship between 

Exposure to TCDD and Ischemic Heart Disease 

 

SES, socioeconomic status; MI, myocardial infarction 

*Smoking, stress, physical activity 
†Diabetes, hypertension, and other comorbid conditions 
‡High density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, and other biometric screening tests 

 

While DAGs provide a new approach for identifying potential confounders of exposure-disease relationships, 

they can be challenging to draw and inclusion of latent (i.e. unmeasured) variables can pose additional problems 

to their application.  More importantly, adjustment for covariates identified as confounders using DAGs may not 

be sufficient to control for confounding.  For example, Table 1 presents the distribution for a disease risk factor 

by exposure and population type, where doomed indicates that a population of individuals will become ill 

regardless of exposure and immune represents a population of individuals who, despite exposure status, will 

never develop the disease (i.e., exposure has no effect on disease outcome).  Although only the “Total” and 

“Incidence” data would be observable in an actual study, the counts and proportions presented demonstrate that 

the risk factor is related to exposure and predicts disease among unexposed individuals.  Yet, if the risk factor is 

not controlled for, the proportion of diseased individuals in the exposed and unexposed groups is equal, as it 

should be since exposure does not affect the outcome.  On the contrary, adjusting for the risk factor produces 

estimates that erroneously suggest the risk factor inhibits the development of disease in both strata. 
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Table 1: Hypothetical Distribution for a Disease Risk Factor by Exposure and Individual Type* 
 

 Risk Factor Present  Risk Factor Absent  Crude 
Individual Sub-type Exposed Unexposed  Exposed Unexposed  Exposed Unexposed 

Doomed
†

 60 70  40 180  100 250 

Immune
‡

 40 30  60 220  100 250 

Total 100 100  100 400  200 500 
Incidence 0.60 0.70  0.40 0.45  0.50 0.50 

*From Greenland and Robbins (1986)
16

 

†Become ill regardless of exposure 
‡Are immune to disease regardless of exposure 
 

Misclassification of both exposures and health outcomes also provide an ever-present challenge when 

interpreting the dioxin epidemiological literature.  Misclassification of even a few individuals in studies with 

small numbers of exposed (or unexposed) cases can result in substantial changes to the estimate of effect.  

Such an example is demonstrated in Tables 2A and 2B.  Based on the incorrect classification of exposure 

(Table 2A), the observed OR is OR = (61*451)/(1073*14) = 1.83.  If three of the cases that were actually ever-

exposed were misclassified as never-exposed, the true effect of dioxin exposure on ischemic heart disease 

would be (64*451)/(1073*11) = 2.45, a larger effect than the misclassified OR. 

 
Table 2A: Misclassification of Exposure by Disease Status* 

 Ischemic Heart Disease + Ischemic Heart Disease - Total 

TCDD Ever-Exposed 61 1073 1134 

TCDD Never-Exposed 14 451 465 

Total 75 1524 1599 

*Adapted from McBride et al. (2009)
15

 

 
Table 2B: True Classification of Exposure by Disease Status 

 

 Ischemic Heart Disease + Ischemic Heart Disease - Total 

TCDD Ever-Exposed 64 1073 1137 

TCDD Never-Exposed 11 451 462 

Total 75 1524 1599 
 

Additionally, the common assertion that non-differential misclassification causes estimates of effect to be 
biased toward the null is erroneous.  Indeed, exact non-differential misclassification only results in bias toward 

the null under exceedingly precise conditions
17-18 

and, even so, does not necessitate that the measure of 
association underestimates the true effect of exposure on disease (i.e. the reported effect could be biased 
toward the null and still overestimate the true effect). 

 
Undoubtedly, one of the more conspicuous errors in the epidemiological dioxin literature is the 

excessive reliance on statistical significance.  An over-emphasis on reporting significant associations and 

associations with the largest effects in peer-reviewed articles has resulted, generally, in systematic 

publication bias and outcome reporting bias.19-21  
When reporting study findings, consideration must be given 

to the number of outcomes evaluated and both significant and non-significant results.  Reporting only 

statistically significant findings can result in type I errors. For example, if 100 endpoints are examined and a 

study uses a type I error probability (i.e. alpha) of 0.05, then we can expect five significant results due to 

chance alone.  Another concern with reporting only statistically significant results is the manipulability of 

statistical methods. Often the probability of making a type I error is set at 0.05 or 0.10.  When alpha = 0.10, a 

p-value of 0.06 would be statistically significant.  A p-value of 0.06 would not be statistically significant, 

however, when alpha = 0.05.  De-emphasizing the weight given to statistical significance is essential 

considering that it often cannot truly be detected since a good mathematical equation for random error has not 

been defined for non-randomized (i.e. observational) studies and the calculation of a p-value assumes no 
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systematic error is present.  Rather, attention should focus on the size of the estimate of effect and uncertainty 

resulting from misclassification, bias, and confounding.  This is particularly important since a measure of 

effect can be elevated but not significant and still represent an important finding that needs to be explored 

further, whereas some statistically significant results may not be meaningful at all (e.g., OR = 1.03 and 95% 

Confidence Interval = 1.02 – 1.04). 

 
As with most epidemiologic research, there are several limitations of the published literature on dioxin 

exposure and human disease occurrence.  While it is important to acknowledge the shortcomings of these 

studies, the benefit of quantifying how study imperfections impact measures of effect is becoming more 

evident as the desire to identify biologically relevant causal relationships intensifies within the field.  

Conducting sensitivity and/or uncertainty analyses are possible solutions to address study weaknesses in 

addition to using novel methods for identification of confounders and to manage confounding.  Moreover, it is 

vital that interpretation and pertinence of epidemiological dioxin research is not contingent on statistical 

significance alone, but rather focuses on causal inference. 
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