PPAR CALUX BIOASSAYS FOR SINGLE COMPOUNDS AND COMPLEX MIXTURES OF PERFLUOROALKYL ACIDS (PFAAs)

Behnisch PA¹, Besselink H¹, Van der Linden S¹, De Voogt P², Brouwer A¹

¹BioDetection Systems BV (BDS), Science Park 406, 1098 XH Amsterdam, The Netherlands; ²University of Amsterdam, Faculty of Science – Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH, Amsterdam, The Netherlands

Introduction

Perfluoroalkyl acids (PFAAs), a group of man-made compounds widely used as surfactants, lubricants, polymers, and firefighting foams, are wide-spread in the environment, wildlife, and in humans. Toxicity of PFAAs in mammals is related to immunotoxicity, hepatotoxicity, developmental toxicity and reproductive toxicity. PFAAs are suspected endocrine disrupting compounds (EDCs). In a previous report, we investigate the endocrine disrupting activities of several PFAAs on various human steroid hormone receptors by means of the $ER\alpha$, $ER\beta$, AR, PR and GR CALUX bioassays, both agonistic as well as antagonistic¹. These U2-OS-based CALUX bioassays measure the activities on the androgen receptor, estrogen receptors alpha and beta, progesterone receptor, and glucocorticoid receptor. The study showed that the suspected endocrine disrupting activity, if any, of PFAAs did not act via direct interference with human steroid hormone receptors. In the present study, an expanded series of PFAAs were evaluated on their ability to affect peroxisome proliferatorreceptors PPAR α and PPAR γ using the PPAR α and PPAR γ CALUX bioassays. These receptors are thought to regulate physiological processes that influence e.g. lipid homeostasis, peroxisome proliferation, adipogenisis and reproduction^{2,3}. The results from this study clearly indicate that some PFAAs activate the PPAR α receptor whereas others are activators of the PPARy receptor or both. We will also report results from several real world samples containing complex mixtures of PFAAs in comparison to chemical analysis by using REP values of both PPAR CALUX bioassays.

Materials and Methods

Compounds

The PFAAs tested are given in Table 1., GW7674 (PPAR α CALUX) and Rosiglitazone (PPAR γ CALUX) were used as positive controls. All PFAAs were tested in a concentration range of $3.0*10^{-7}$ M to $1.0*10^{-3}$ M.

CALUX bioassays

PPARα and PPARγ CALUX cells were plated in 96 well plates with phenol red free DF medium supplemented with 5% dextran coated charcoal stripped FCS (DCC-FCS) at a volume of 100 μ l per well. After 24 h, medium was removed from the cells and 200 μ l of DCC-FCS medium containing the compound(s) of interest (dissolved in DMSO), final dilution 1:1000) was added. After 24 hours the medium was removed, cells were lysed in 30 μ l Triton-lysis buffer and measured for luciferase activity using a Berthold luminometer for 0.1 min/well. In addition to the PPARα and PPARγ CALUX, all compounds were also tested on the GR CALUX bioassay for their ability to activate the glucocorticoid receptor and the cytotoxicity CALUX to determine the potency of the compounds to cause cell-death in the CALUX bioassays.

Data analysis

Analysis of peroxisome proliferator-receptors mediated luciferase activity in PPAR α and PPAR γ CALUX cells was performed as followed. Luciferase activity per well was measured as relative light units (RLUs). Fold induction was calculated by dividing the mean value of light units from exposed and non-exposed (solvent control) wells. For evaluation of data, only concentrations were taken into account that did not cause cytotoxicity as determined using the cyotoxicity CALUX bioassay.

Product name	Supplier	Batch	CAS	Purity	Powder/Fluid	Mw (g/mol)
Perfluoropentanoic acid	Aldrich	06316KH	2706-90-3	97	fluid	264.1
Perfluoroundecanoic acid	Aldrich	00107DJ	2058-94-8	95	powder	564.1
Perfluorododecanoic acid	Aldrich	03727PH	307-55-1	95	powder	614.1
Perfluorotetradecanoic acid	Aldrich	MKBC9206	376-06-7	97	powder	714.1
Perfluorononanoic acid	Aldrich	07726JH	375-95-1	97	powder	464.1
Perfluorodecanoic acid	Aldrich	01603DH	335-76-2	98	powder	514.1
Perfluoroheptanoic acid	Aldrich	04804DJ	375-85-9	99	powder	364.1
Perfluorobutyric acid	Aldrich	S86465-319	375-22-4	98	fluid	214.0
Nonafluoro-1-butanesulfonic acid	Aldrich	24318BB	29420-49-3	98	powder	338.2
Perfluorooctanoic acid	Aldrich	11419LE	335-67-1	96	powder	414.1
Tridecafluorohexane-1-sulfonic acid potassium salt	Aldrich	1394969	3871-99-6	98	powder	438.2
Heptadecafluorooctanesulfonic acid potassium salt	Aldrich	1424328	2795-39-3	98	powder	538.2
Heptadecafluorooctanesulfonic acid	Fluka	46139/1 11200	1763-23-1	40?	fluid	500.1
Perfluorotridecanoic acid	Aldrich	03025BD	72629-94-8	97	powder	654.1
Undecafluorohexanoic acid	Fluka	1372006 60908012	307-24-4	97	fluid	314.1

List and source of DEAAs tested

Table 2

Table 1

Qualitative representation of the activity of PFAAs tested in the PPAR α , PPAR γ and GR CALUX bioassay. A compound is indicated as positive in case the maximum observed induction was more than 1.5-times the background induction.

PFOA	PPARα CALUX	PPARy CALUX	GR CALUX
Perfluoropentanoic acid	+	-	-
Perfluoroundecanoic acid	-	+	-
Perfluorododecanoic acid	-	+	-
Perfluorotetradecanoic acid	+	+	-
Perfluorononanoic acid	+	-	-
Perfluorododecanoic acid	-	-	-
Perfluoroheptanoic acid	+	-	-
Perfluorobutyric acid	+	-	-
Nonafluoro-1-butanesulfonic acid	+	+	-
Perfluorooctanoic acid	+	+	-
Tridecafluorohexane-1-sulfonic acid	+	+	-
Heptadecafluorooctanesulfonic acid	+	+	-
Heptadecafluorooctanesulfonic acid	+	+	-
Perfluorotridecanoic acid	-	+	-
Undecafluorohexanoic acid	-	-	-

Results and Discussion

Although the mechanism through which PFAAs produce toxicity remains unclear, it has been postulated that activation of the PPAR α and PPAR γ receptors may be a factor^{3,4}. In both laboratory animals and in vitro models, the potential toxicity of PFAAs have been demonstrated. Here, the potential of PFAAs to activate the PPAR α and PPAR γ receptor in the human U2-OS-based CALUX bioassays were studied. Ten out of the 15 PFAAs tested showed to be activators of the PPAR α receptor. Only perfluoroundecanoic acid, perfluorododecanoic acid, perfluorododecanoic acid, perfluorotridecanoic acid and undecafluorohexanoic acid could not induce the PPAR α CALUX bioassay at the concentrations evaluated. Nine of the PFAAs tested showed no activity in either one of the PPAR γ CALUX bioassays tested. By using the dose-response curves below, we will also evaluate REP values for the here tested PFAAs and will apply them on

the chemical data of real samples representing a complex mixture of PFAAs.

Although the suspected endocrine disrupting activity of PFAAs does not act via direct interference with human steroid hormone receptors as shown in our previous study¹, the present study clearly shows that various PFAAs directly activate either one or both the PPAR α and PPAR γ receptor in the human U2-OS-based CALUX bioassays. Therefore, the panel of PPAR CALUX bioassays may well contribute to further study and understand the mechanism of toxicity of PFAAs in the environment, wildlife and humans.

PPARα CALUX

GW

Perf

Perf

Perf

Perf

Perf

Perf

Perf

Perf

Non

Perf

Trid

Hep

Hep

Tridecafluor Heptadecafl

Heptadecafl

Perfluorotrid

Undecafluor

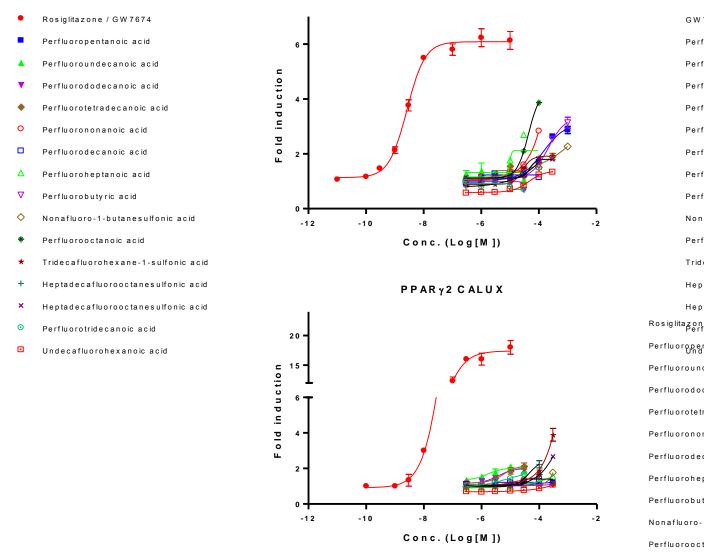


Figure 1. Induction of PPAR α (top) and PPAR γ (bottom) CALUX following 24-hours of exposure to a wide concentration range of PFAAs. As positive controls, GW7674 (PPARa CALUX) and Rosiglitazone (PPARy CALUX) were used. Only concentrations of PFAAs are shown that did not cause cytotoxicity as determined using the cytotoxicity CALUX.

References

- 2

1 Sonneveld E, Man HY, Pieterse B, Brouwer A, Behnisch P, Van der Burg B. Organohalogen Compounds. 2007; 69:2877. 2 Corsini E, Avogadro A, Galbiati V, dell'Agli M, Marinovich M, Galli CL, Germolec DR. Toxicol Appl. Pharmacol. 2011; 250:108. 3 Takacs ML, Abbott BD. Toxicol. Sci. 2007; 95:108. 4 Abbott BD, Wolf CJ, Das KP, Zeht RD, Schmid JE, Lindstrom AB, Strynar MJ, Lau C. Repr. Toxicol. 2009; 27:258.