AUTOMATED PROCEDURES IN ISO17025 ROUTINE DIOXIN LABORATORY: IMPACT ON THE THROUGHPUT

Focant JF, Scholl G, Eppe G, De Pauw E

CART, Mass Spectrometry Laboratory, Chemistry Department, University of Liège, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liège, Belgium. (JF.Focant@ulg.ac.be)

Introduction

Looking back some 10 years ago, most of dioxin analyses required a least a few days to be completed. The major reason for this was the tremendous efforts to be provided to ensure proper quality of extracts prior to GC-MS measurement. Those efforts often translated in multi-steps procedures, including Soxhlet, liquid-liquid extraction (LLE), solid-phase extraction (SPE), sequential accelerated solvent extraction, (ASE), multiple column preparative liquid and size exclusion chromatography, ... most of them being carried out manually and repeatedly. Recent improvements in terms of viability of parallel automated systems contributed to speed up analytical processes. The ease of use, the robustness, and the modularity of most systems make their use successful in laboratories of various sizes and types, no matter what matrices are. The possibility of performing rapid analyses is especially important in food-feed control under European guidelines (e.g. Commission Directive 2006/13/EC, Commission Regulation (EC) No 152/2009, Commission Regulation (EC) No 199/2006).

This paper reports on the implementation of a highly automated procedure for the measurement of PCDD/Fs and DL-PCBs in food, feed, and feed ingredients under strict QA/QC requirements under ISO17025 regulation.

Materials and Methods

<u>Test Materials</u> All food, feed, ingredients, ... under EU regulation.

Target compounds

The seventeen 2,3,7,8 toxic PCDD/Fs and the twelve dioxin-like PCBs (77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189).

Analytical procedures

Extractions are either carried out by the sequential extractor ASE[®] 350 from Dionex (Sunnyvale, CA, USA) or the parallel extractor PLE-6 from Fluid Management Systems (Waltham, MA, USA). All samples are spiked with a mixture of labeled PCDD/Fs, DL-PCBs, and NDL-PCBs thoroughly mixed and placed in the extraction cell (30-100 mL). After extraction, extracts are filtered on sodium sulphate and the solvent are exchanged to hexane using a rotary evaporator. Manual parallel disposable glass columns are used to pre-clean the extracts. The extract is further cleaned and fractionated with an automated Power-Prep system (Fluid Management Systems). The NO-PCB and PCDD/F fraction is injected into a gas chromatography – isotope dilution high resolution mass spectrometer (GC-IDHRMS, Autospec Ultima, Waters, UK). The MO-PCB fraction is on a MAT95 XL GC-IDHRMS (ThermoFinniganMAT, Bremen, Germany). All details regarding the analytical procedure for clean-up, fractionation, and GC-HRMS can be found elsewhere¹⁻⁴. All solvent and consumable issued from lots used by our laboratory for routine analyses according to a BELAC accredited method.

Results and Discussion

The flow of samples in the laboratory is attached to one of the three procedures listed in Figure 1.

Figure 1: Matrix-dependent sample workflow

J+1 strategy

It is developed for animal fats and vegetable oils that do not require extraction prior clean-up. Depending on the origin and the regulatory level, samples sizes range between 2g (fish oils) and 7g (pork fat). The time between sample reception and reporting to the customer cannot exceed 31 hours. In practice, a sample must be received at the lab office before 9 AM on day 1. It is inspected, encoded, and internally labeled. By 9.30 AM, series of samples are aliquoted to the right amount, diluted in hexane (50 mL), and spiked with the ¹³C internal standard mixture. A quick fat removal step is carried out using manual parallel disposable glass columns. The 200 mL of hexane are reduced to 20 mL using rotary evaporators as some samples might have turbidity and opacity levels that could perturb the use of optical sensors such as the ones used in automated evaporation devices. Those devices can be used if the evaporation is timed rather than optically sensed, especially with final volumes such as 20 mL.

Automated parallel clean-up and fractionation start at 12 PM and take 75 minutes for 6 samples to be processed. An additional 15 minutes is required to decontaminate the system and re-start the next series of samples. The related programs are shown in Figure 2. Both Fraction 1 (PCDD/Fs and NO-PCBs, 80 mL of toluene) and fraction 2 (MO-PCBs and NDL-PCBs, 100 mL of hexane/dichloromethane 50:50) are collected in evaporation tubes to which GC injection vials are screwed. Those tubes are paced inside the evaporation device during collection so that the evaporation process is started before the end of the elution (Figure 3). The final volume contained in the GC injection vial is approximately 300 μ L. GC-MS injections can starts by 4 PM the first day and continue overnight. The time before 4 PM that day was used by the GC-MS operator to perform all required QA/QC testing of the system. On day 2, GC-MS data are revised and electronic reports are created once all QA/QC checks are verified and approved. Reports are sent out before 4 PM on the second day. The technical lab staff works in 2 schedules shifted by 3 hours (6 AM – 2 PM and 9 AM – 5 PM), that ensures 11 hours of work on a single day.

J+3 strategy

It is developed for animal feed and ingredients that do require extraction prior clean-up. Depending on the origin and the regulatory level, samples sizes range between 10g and 30g (dry weight). The time between sample reception and reporting to the customer cannot exceed 79 hours. In practice, a sample must be received at the lab office before

PCDD/F, PCB clean-up and fractionation				
$\begin{array}{cccccccc} 001 & 10 \\ 002 & 10 \\ 003 & 10 \\ 004 & 10 \\ 005 & 10 \\ 006 & 10 \\ 007 & 10 \\ 008 & 10 \\ 009 & 10 \\ 009 & 10 \\ 010 & 10 \\ 011 & 5 \\ 012 & 10 \\ 013 & 10 \\ 013 & 10 \\ 014 & 10 \\ 015 & 10 \\ 016 & 10 \\ 017 & 5 \\ 018 & 1 \\ \end{array}$	15 12 20 100 12 40 12 20 12 30 50 90 12 100 12 10 80 .5	01222116 0121216 01221226 0122006 05222226 0322226 03221226 03221226 0122226 0122126 06112126 03211222 0122226 0121226 03211222 01222226 01221226 01221226 05221111 00000000	00000000 0000000 0000000 0000000 000000	fill tubing wet alumina column wet carbon column w condition silica change to toluene pre elute with tolu change to 50% pre-elute with 50% change to hexane pre-elute with hexa Add sample Elute silica with h change to 50% Elute with 50%; load change to hexane flush with hexane elute PCDD/PCDF turn off valves
PCDD/F, PCB decontamination				
001 10 002 10 003 10 004 10 005 10 006 10 007 10 008 1	20 20 30 20 20 20 30 . 5	06222006 06222006 03111221 03111222 03222006 01222006 01111116 00000000	0000000 0000000 0000000 0000000 0000000	wash inlet 50/50 wash inlet hexane wash column 50/50 wash column 50/50 wash bypass 50/50 wash bypass hexane wash column hexane turn off valves

Figure 2: Automated clean-up simplified programs

Figure 3: Automated clean-up simplified programs

3 PM on day 1. It is inspected, encoded, and internally labeled. By 3.30 PM, series of samples are aliquoted to the right amount, grinded, and dried overnight at 60°C. The next morning, 10-30g of samples are spiked with the ¹³C internal standard mixture, eventually mixed with some sorbent, and packed in extraction cells extracted either

sequentially (ASE) or in parallel (PLE). Those extractions start by 11 AM on day 2. By 1 PM, extracts are filtered on sodium sulphate. Because of the use of many different mixtures of extraction solvents, extracts are solvent exchanged prior to be cleaned-up. This occurs using rotary evaporators. By 5PM, batches of 6 extracts can be ready in hexane (20 mL) for the next step. From day 3, the procedure reach the J+1, with or without the manual parallel disposable glass column step, depending on matrices.

J+5 strategy

All samples received in the lab without prior notice are considered in J+5. They fall in one of the two previous categories, but need to be incorporated in planned series.

Operational staff and instruments

The lab runs 2000 samples per year. The staff is made of technicians (2.5 FTE), secretary (0.5 FTE), engineer (1.5 FTE) (450 samples/pers/year). One PLE-6, one ASE-300 and two Power-Prep (P-5) are used for sample preparation. Three rotary evaporators, three Turbovap II, one Power-vap 6, and one Rapid-vap are used for solvent reduction and exchange. Two GC-HRMS instruments are used, one for PCDD/Fs and NO-PCBs, one for MO-PCBs and NDL-PCBs. A key aspect is the maximization of the turnover by working on several stages in parallel, as illustrated in Figure 4. This obviously requires dedicated and efficient lab staff.

Figure 4: imbrication of sample series to maximize turnover

References

- 1. Focant, J.-F. et al. (2001) J. Chromatogr. A 925: 207-21.
- 2. Focant, J.-F. et al. (2003) Chemosphere 52: 725-33.
- 3. Focant, J.-F. et al. (2004) Talanta 63: 1101-13.
- 4. Focant, J.-F. et al. (2006) J. Chromatogr. A. 1130: 97-107.