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Abstract 
QSPR models were developed for air sampling rates (Rair) of semipermeable membrane devices (SPMDs) for 
PAHs, using partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical 
PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by 
the PLS components and determined by cross-validation (Q2

cum), for the optimal models, is 0.799, indicating that 
the model has good predictive ability and robustness, and could be used to estimate Rair values of the above 
mentioned compounds. The main factors governing Rair values of PAHs are intermolecular interactions with 
weak electron-transfer and the energy required for cave-forming in dissolution of PAHs into triolein of SPMDs.  
 
Introduction 
Semi-permeable membrane devices (SPMDs) is one of the popular passive samplers for sampling persistent 
organic pollutants (POPs) in air1-2. The application SPMDs has been summarized in many articles 1-4. By means 
of SPMDs sampling, only the amount of POPs sequestrated in each SPMD can be determined. However, a main 
community concern is the current concentrations of POPs in air. How can be determined the current air 
concentrations from the amount of sequestered POPs in SPMDs? When SPMDs sampling is in linear uptake 
stage, the atmospheric concentration of POPs, Cair (pg m-3), can be calculated from the air sampling rate of 
SPMDs, Rair (m3 day-1 SPMD-1), the concentrations of POPs sequestered by SPMDs (NSPMD, pg SPMD-1) and the 
exposure time of SPMDs (t,days) using the following equation5: 
                            Cair = NSPMD/( Rair t)                                           (1) 

It has been found that Rair were influenced by the molecular weight, the substitution patterns of chlorine in 
polychlorinated biphenyls(PCBs), and Koa of POPs2，6-8. It is well known that quantitative structure–property 
relationship (QSPR) method provides a convenient tool to predict physicochemical properties of chemicals only 
from molecular structural information, and it may also provide insight into main factors that influence 
physicochemical properties of chemicals9-10. To our knowledge there is no QSPR study about Rair to date. The 
aim of this paper is to develop QSPR model for Rair of polycyclic aromatic hydrocarbons (PAHs), and analyze 
the key factors influencing the Rair. It is expected that an ideal model can be found which can be used to predict 
Rair only from the structure characteristics of PAHs. Then in the future, only a few amount of Rair of PAHs should 
be measured, while the Rair of other PAHs could be predicted by the QSPR model, and consequently the Cair 
could be derived using equation (1). 
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Materials and Methods 
Data Source. PAHs data were taken from the literature [11]. The atmospheric concentration of each PAH used to 
calculate Rair was the total air concentration (Cv+Cp, where Cv is the concentration of the compound in the vapor 
phase; Cp is the concentration of the compound in particle phase). The sampling rates of SPMDs calculated 
according to the total air concentration for PAHs are listed in Table 1. 
 

Table 1. SPMD sampling rates of PAHs 
PAH Rair

(m3 d-1 SPMD-1) 
Fluorene (Flo) 
phenanthrene (Phe) 
anthracene (Ant) 
fluoranthene (Flu) 
pyrene (Pyr) 
benz[a]anthracene (B[a]A) 
chrysene (Chr) 
benzo[e]pyrene (B[e]P) 
benzo[a]pyrene (B[a]P) 
indeno[1,2,3-c,d]pyrene (I[c,d]P) 
benzo[g,h,i]perylene (B[g,h,i]P) 

1.6 
4.2 
3.7 
4.3 
1.8 
1.5 
3.1 
1.2 
0.5 
1.7 
0.7 
Descriptors and statistical analysis. Recently, 
semiempirical, more complete parameter 
optimization PM6 method12 has been implemented 
in MOPAC 2009 package13, giving satisfactory 
estimates of molecular properties. In this paper, 
molecular structures of the studied compounds were 
drawn with CS ChemDraw Ultra 6.0. Then 
geometry optimizations and quantum-mechanical 
calculations were performed at the semi-empirical 
PM6 level12 with the MOPAC 2009 package13. A 
total 17 molecular descriptors that reflect the overall 
characteristics of the chemicals were obtained from 
the MOPAC output files. The molecular structural 
descriptors are listed in Table 2. 
 
Partial least squares (PLS) regression was adopted for constructing QSPR model, because this method can 
analyze data with strongly collinear, noisy and numerous predictor variables14. In this study, the PLS analysis 
was carried out by Simca-S (Version 6.0, Umetri AB & Erisoft AB ). Simca-S employs “cross validation” to 
determine the number of PLS components (A). Q2

cum is a main statistic parameter of a PLS model, which denotes 
the cumulative variance of the dependent variable explained by the extracted PLS components, and is a good 
measure of the predictive power and robustness of the model. When Q2 cum of a model is larger than 0.5, the 
model can be considered to be predictive and robust. In order to obtain the optimal QSPR model, a variable 
selection procedure described in the literature [9] was adopted here. 

 
Results and Discussion 
PLS analyses were performed with all the descriptors. After variable selection, the optimal PLS model obtained 
was: 

Rair =-2.187×10-1 – 1.714×10 -3 CCR – 3.485 EHOMO+1.795×10-1 qC
–                 (2) 

n = 11, A= 2, R2
X(adj)(cum) = 0.614, R2

Y(adj)(cum) = 0.841, Q2
cum = 0.799, r = 0.934 

 
Where n is the number of data points, A is the number of PLS components, R2

X(adj)(cum) and R2
Y(adj)(cum) stand for 

the cumulative variance of all the predictor variables and dependent variable, respectively, explained by the 
extracted components, and r is the correlation coefficient between observed and fitted values. 
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Table 2. Theoretical molecular structural descriptors 
No. Descriptors Descriptions 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

∆Hf 

TE
EE
CCR 
IP 
DE 
ACOSMO

VCOSMO

Mw 
ME 
AH 
EHOMO

ELUMO 

qC
–

qH
+

µ 
α 

Standard heat of formation (kJ) 
Total energy (eV) 
Electronic energy (eV) 
Core–core repulsion energy (eV) 
the vertical ionization potential (eV) 
the dielectric energy (eV) 
COSMO area (Å2) 
COSMO volume(Å3) 
molecular mass (atomic mass units) 
Mulliken’s electronegativity (eV) 
Parr and Pople’s absolute hardness (eV) 
The energy of the highest occupied molecular orbital (eV) 
The energy of the lowest unoccupied molecular orbital (eV) 
The most negative net atomic charges on a carbon atom (atomic charge unit) 
The most positive net atomic charges on a hydrogen atom (atomic charge unit) 
The total dipole moment(Debye) 
average molecular polarizability (atomic units) 

 
Fig. 1 is the plot of predicted vs. observed Rair according to equation (2), from which it can be seen that the 
predicted Rair values are consistent with the observed values. Q2

cum of the optimal models is 0.799, which is 
higher than 0.5, indicating that the model has good predictive ability and robustness, and could be used to 
estimate Rair values for this kind of compounds. In view of difficulties in the measurements of Rair, the predicted 
data could be regarded as an approximation of air sampling rates. Thus Cair for the sampling site can be obtained 
by calculating with NSPMD and Rair, where there are no possibilities for active sampling measurements. 

y = 0.8724x + 0.2819

r = 0.9341
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Fig.1. Plot of observed and predicted Rair values. 

 
Variable importance in the projection (VIP) of a predictor variable indicates its influence on response variable, 

 3

Vol. 71, 2009 / Organohalogen Compounds   page 000006



which is listed in Table 3. The values of weights of predictor variables ( w* ) and weights of response variable ( c ) 
of the PLS model are also presented in Table 3. The weights can represent how much a single variable 
contributes in each PLS component to the modeling of Rair. Predictor variables which are more important for the 
nth PLS component, have higher w*[n] absolute values, and response variables well modeled by the nth PLS 
component have large c[n] absolute values. From the values of w* in Table 3, it can be seen that the first PLS 
component is mainly relevant to EHOMO and CCR, and the second PLS component qC

–. CCR is significantly 
related to Mw and α, and may represent non-specific intermolecular interactions or the energy required for 
cave-forming in dissolution of PAHs into triolein of SPMDs. From its coefficient, it can be seen that CCR is 
negatively correlated with Rair, so it may mainly describe the energy required for cave-forming, which is a key 
factor for Rair of PAHs. EHOMO and qC

– characterize molecular abilities to accept or donate electrons in 
intermolecular interactions, and therefore are related to intermolecular interactions with weak electron-transfer. 
The stronger the intermolecular interactions are, the higher the air sampling rate is. 

 
Table 3. VIP values and PLS weights in model 
 VIP w*c[1] w*c[2] 
EHOMO

CCR 
qC

–

Rair

1.104 
1.042 
0.833 
 

-0.701 
-0.662 

0.266 
0.717 

-0.099 
-0.095 

1.075 
0.395 
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