# APPLICATION OF MICROWAVE ASSISTED EXTRACTION TO THE ANALYSIS OF DIOXINS FROM SOIL AND SEDIMENT CERTIFIED REFERENCE MATERIALS

Takashi Miyawaki<sup>1,2</sup>, Hirofumi Nakamura<sup>3</sup>, Takanori Makino<sup>3</sup>, Katsuhisa Honda<sup>1</sup>

<sup>1</sup>Environmental Science for Industry, Ehime University, 3-5-7 Tarumi, Matsuyama Ehime, 790-8566, Japan; <sup>2</sup>Present address Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan; <sup>3</sup>Miura Institute of Environmental Science, MIURA Co., Ltd., 864-1, Hojo-Tsuji, Matsuyama Ehime, 799-2430, Japan

# Abstract

Microwave assisted extraction (MAE) was applied to the extraction of polychlorinated dibenzo-*p*-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (DL-PCBs) from soil and sediment certified reference materials. Six grams of the samples were extracted with mixed solvents composed of 6 ml of toluene, 2.4 ml of water, and 4.8 ml of ethanol at a temperature of 125°C for 30 min. The average concentrations of PCDD/DFs and DL-PCBs corresponded to the results of the certified value, and the reproducibility of this MAE method was below 19% of the relative standard deviation for the certified reference materials. These results indicated that a rapid analysis of dioxins from soil and sediment could be performed with accuracy and precision by our MAE method.

#### Introduction

In Japan, the legal testing of dioxins in soils and sediments is carried out in accordance with the methods specified by the manuals for the survey and measurement of dioxins published by Japan Environment Ministry<sup>1,2</sup>. These methods have a common problem in that the analysis cycle time is relatively long because the analytical procedures are complicated. Thus, we have studied on the rapid analysis by MAE. In our previous studies, we found that the extraction efficiency of dioxin increased with the addition of water and ethanol to the extraction solvent<sup>3</sup>. Furthermore, we confirmed that the extracting solvent was composed of 6 ml of toluene, 2.4 ml of water, and 4.8 ml of ethanol for 6 g of soil and/or sediment, and that the extraction efficiency under conditions of  $125^{\circ}$ C for 30 min was comparable to that of Soxhlet extraction using test sample<sup>4</sup>. In this study, we performed the extraction of dioxins from soil and sediment certified reference materials in order to evaluate the validation of our MAE method. We analyzed the concentrations of dioxins and compared the values obtained with the certified values presented by The Japan Society for Analytical Chemistry.

# **Methods and Materials**

# **Samples**

Soil and sediment certified reference materials were purchased from The Japan Society for Analytical Chemistry; the serial numbers of these samples were JSAC 0421 and JSAC 0431, respectively. The samples were stored in a desiccator at room temperature until chemical analysis.

#### Microwave assisted extraction

The experimental procedure of this study is summarized in Fig. 1. Six grams of soil and sediment certified materials were weighed into quartz glass extraction cells (45 ml, Q-20; Milestone General, Italy). After the addition of an internal standard as a cleanup spike (400 pg of both <sup>13</sup>C-labeled PCDD/DFs chlorinated at positions 2, 3, 7, 8, and <sup>13</sup>C-labeled DL-PCBs: #77, #81, #105, #114, #118, #123, #126, #156, #157, #167, #169, #189), the sample was extracted with mixed solvent composed of 6 ml of toluene, 2.4 ml of water, and 4.8 ml of ethanol at a temperature of 125°C for 30 min using a microwave extraction system (ETHOS TC; Milestone General). After cooling, the ethanol contained in the extract was removed using a rotary evaporator, and then the

water was removed with anhydrous sodium sulfate. The remaining extract was refined by multilayer silica gel and activated carbon dispersed silica gel column chromatography. The refined solution was finally concentrated to 20  $\mu$ l by nitrogen flow following the addition of an internal standard as a syringe spike (400 pg of <sup>13</sup>C-labeled 1,2,7,8-TCDF, 1,2,3,4,6-PeCDF, 1,2,3,4,6,9-HxCDF, and 1,2,3,4,6,8,9-HpCDF). The total time required for these analytical procedures was approximately 5 h.

#### <u>Analysis</u>

The identification and quantification of PCDD/DFs and DL-PCBs were performed by high-resolution gas chromatography coupled with а high-resolution mass spectrometric detector (HRGC/HRMSD) (Agilent 6890/JEOL JMS-700D, Agilent 6890/JEOL JMS-800). BPX-DXN capillary column (60 m  $\times$  0.25 mm i.d.; SGE, USA) and RH-12ms capillary column (60 m  $\times$  0.25 mm i.d.; Inventx, USA) were used for the separation of PCDD/DFs and DL-PCBs. The column oven temperature of the BPX-DXN was programmed at a rate of 20°C min<sup>-1</sup> from an initial temperature of 150°C (1 min hold) to a temperature of 220°C, then at a rate of 2°C min<sup>-1</sup> to a temperature of 260°C, and subsequently at a rate of 5°C min<sup>-1</sup> to a final temperature of 320°C (3.5 min hold). The column





oven temperature of the RH-12ms was programmed at a rate of  $10^{\circ}$ C min<sup>-1</sup> from an initial temperature of  $150^{\circ}$ C (1 min hold) to a temperature of  $210^{\circ}$ C, then at a rate of  $3^{\circ}$ C min<sup>-1</sup> to temperature of  $280^{\circ}$ C, and at a rate of  $20^{\circ}$ C min<sup>-1</sup> to a final temperature of  $320^{\circ}$ C (11.7 min hold). The injector temperature was retained at  $250^{\circ}$ C and each sample (2 µl) was injected in the splitless mode. Analysis was performed using EI ionization and selected ion monitoring mode with mass resolution greater than 10000.

#### **Results and Discussion**

# Recovery of spiked <sup>13</sup>C-labeled PCDD/DFs and DL-PCBs

Analysis of the soil and sediment certified reference materials were performed three times, respectively. The recoveries of <sup>13</sup>C-labeled PCDD/DFs from the soil were between 76 and 120%, whereas those of <sup>13</sup>C-labeled DL-PCBs were between 74 and 97%. In addition, the recoveries of <sup>13</sup>C-labeled PCDD/DFs from the sediment were between 73 and 113%, whereas those of <sup>13</sup>C-labeled DL-PCBs were between 68 and 114%. All data were within the permissible range of 50 to 120%, as defined by the official manual<sup>1,2</sup>. These results demonstrate that most of the PCDD/DFs and DL-PCBs could be recovered efficiently from the sample matrices of the soil and sediment by our MAE method.

### Comparison with the concentration of dioxins from soil certified reference material

A comparison of the PCDD/DF and DL-PCB concentrations obtained by our MAE method with those of the certified values of JSAC 0421 is shown in Table 1. The average concentration and reproducibility were based on the repeated analysis (n = 3). The values for many of the isomers of the PCDD/DFs and DL-PCBs were within the permissible concentration range of the certified value; however, the values for some isomers were outside the range. Thus, we evaluated the validation of these data using the Z-score calculated with an interlaboratory standard deviation certified by The Japan Society for Analytical Chemistry. As the result, the Z-score of all isomers of PCDD/DFs and DL-PCBs were within  $\pm 2.00$ , it was shown that the concentrations in soil were corresponded satisfactorily to the certified value by statistical method based on robust.

As a reason for the consistency our results with respect to the certified value, it was considered that the extracting power of our MAE method was sufficient for the extraction of PCDD/DFs and DL-PCBs from the soil. Our MAE method is characterized by the addition of water and ethanol to toluene. Previous studies on MAE

| Table 1                      | Comparison of dioxins concentration in soil certified material by microwave-assisted extraction with |  |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| those of the certified value |                                                                                                      |  |  |  |  |  |  |
| Compound                     |                                                                                                      |  |  |  |  |  |  |

| -                         |               | MAE            |     | Certified value |        |                  |      |         |
|---------------------------|---------------|----------------|-----|-----------------|--------|------------------|------|---------|
|                           | Concentration |                |     | Average         | R.S.D. | Concentration    | S.D. | Z-score |
|                           |               | (pg/g dry wt.) | )   | (pg/g dry wt.)  | %      | (pg/g dry wt.)   |      |         |
| 2,3,7,8-TeCDD             | 1.6           | 1.4            | 1.3 | 1.4             | 11     | $1.46 \pm 0.23$  | 0.40 | -0.05   |
| 1,2,3,7,8-PeCDD           | 10            | 9.4            | 8.7 | 10              | 9.3    | $9.0 \pm 1.4$    | 2.5  | 0.20    |
| 1,2,3,4,7,8-HxCDD         | 10            | 8.9            | 8.9 | 9.3             | 7.6    | $8.43\pm0.96$    | 1.73 | 0.51    |
| 1,2,3,6,7,8-HxCDD         | 23            | 21             | 20  | 21              | 7.1    | $19.4 \pm 1.6$   | 2.9  | 0.59    |
| 1,2,3,7,8,9-HxCDD         | 28            | 25             | 24  | 26              | 8.0    | $22.2 \pm 2.4$   | 4.1  | 0.82    |
| 1,2,3,4,6,7,8-HpCDD       | 169           | 138            | 139 | 149             | 12     | $135 \pm 16$     | 30   | 0.46    |
| OCDD                      | 807           | 644            | 583 | 678             | 17     | $682 \pm 60$     | 108  | -0.04   |
| 2,3,7,8-TeCDF             | 16            | 13             | 12  | 13              | 16     | $11.3 \pm 1.4$   | 2.5  | 0.79    |
| 1,2,3,7,8-PeCDF           | 15            | 14             | 14  | 15              | 4.4    | $16.8 \pm 2.5$   | 4.5  | -0.48   |
| 2,3,4,7,8-PeCDF           | 23            | 23             | 21  | 22              | 5.4    | $18.8 \pm 2.1$   | 3.8  | 0.93    |
| 1,2,3,4,7,8-HxCDF         | 28            | 24             | 22  | 24              | 12     | $22.5 \pm 2.3$   | 4.1  | 0.45    |
| 1,2,3,6,7,8-HxCDF         | 30            | 26             | 24  | 27              | 10     | $23.2 \pm 2.3$   | 4.2  | 0.79    |
| 1,2,3,7,8,9-HxCDF         | 2.1           | 2.0            | 1.8 | 1.9             | 8.3    | $2.12 \pm 0.73$  | 1.16 | -0.16   |
| 2,3,4,6,7,8-HxCDF         | 46            | 38             | 37  | 40              | 11     | $32.2 \pm 3.5$   | 6.0  | 1.34    |
| 1,2,3,4,6,7,8-HpCDF       | 118           | 104            | 99  | 107             | 9.2    | $96 \pm 1.0$     | 19   | 0.58    |
| 1,2,3,4,7,8,9-HpCDF       | 16            | 13             | 12  | 14              | 14     | $12.9 \pm 1.0$   | 1.8  | 0.44    |
| OCDF                      | 85            | 75             | 68  | 76              | 11     | $75.0 \pm 9.5$   | 17.1 | 0.05    |
| #81 3,4,4',5-TeCB         | 10            | 8.7            | 8.4 | 9.0             | 8.7    | $9.5 \pm 1.3$    | 2.3  | -0.22   |
| #77 3,3',4,4'-TeCB        | 109           | 96             | 87  | 97              | 11     | $100 \pm 13$     | 23   | -0.11   |
| #1263,3',4,4',5-PeCB      | 46            | 43             | 40  | 43              | 6.6    | $38.1 \pm 5.5$   | 9.5  | 0.55    |
| #169 3,3',4,4',5,5'-HxCB  | 14            | 13             | 12  | 13              | 7.9    | $12.00 \pm 0.96$ | 1.52 | 0.77    |
| #123 2',3,4,4',5-PeCB     | 26            | 18             | 20  | 21              | 19     | $20.0 \pm 3.4$   | 5.6  | 0.23    |
| #118 2,3',4,4',5-PeCB     | 639           | 526            | 498 | 554             | 14     | $543 \pm 51$     | 88.4 | 0.13    |
| #105 2,3,3',4,4'-PeCB     | 265           | 213            | 198 | 226             | 16     | $205 \pm 24$     | 41   | 0.50    |
| #114 2,3,4,4',5-PeCB      | 13            | 9.4            | 9.2 | 10              | 18     | $9.4 \pm 1.8$    | 3.0  | 0.33    |
| #167 2,3',4,4',5,5'-HxCB  | 52            | 53             | 57  | 54              | 5.4    | $56.7 \pm 4.9$   | 8.2  | -0.35   |
| #1562,3,3',4,4',5-HxCB    | 132           | 109            | 104 | 115             | 13     | $104.0 \pm 9.2$  | 15.9 | 0.69    |
| #157 2,3,3',4,4',5'-HxCB  | 49            | 40             | 37  | 42              | 15     | $39.3 \pm 3.4$   | 5.5  | 0.51    |
| #1892,3,3',4,4',5,5'-HpCB | 25            | 22             | 22  | 23              | 7.1    | $21.6 \pm 2.4$   | 4.1  | 0.35    |

have reported that the addition of water to the extraction solvent was effective for the extraction of organic pollutants<sup>5,6</sup>. Water molecules have a high dipole moment and absorb microwaves strongly; consequently, the efficient heating of a sample is obtained. Thus, it is considered that high yield extraction was performed. However, Budzinski et al. reported that the efficiency of PAH extraction from sediment, in which the water content was greater than 50%, was decreased by the high water content, although they confirmed an improvement in extraction when water was added to dichloromethane<sup>6</sup>. These authors indicated that an excessive amount of water possibility acts as a barrier between the extraction solvent and the matrix. In our previous study, we used ethanol, which dissolves in toluene and water, and optimized the volume ratio of the extraction solvent. Using several soils and sediments with different pollution patterns, we confirmed that the efficiency of PCDD/DF and DL-PCB extraction by our MAE method was comparable to that of Soxhlet extraction<sup>4</sup>. This optimization was assumed to have reduced the barrier between toluene and the matrix, thereby allowing the toluene to diffuse in the matrix and extract the PCDD/DFs and DL-PCBs.

In this study, the relative standard deviations of the concentrations of PCDD/DFs and DL-PCBs obtained by our MAE method were below 19%. Therefore, it was found that our MAE method could be performed with not only rapidness but also accuracy and precision.

# Comparison with the concentration of dioxins from sediment certified reference material

A comparison of the PCDD/DF and DL-PCB concentrations obtained by our MAE method with those of the certified values of JSAC 0431 is shown in Table 2. The average concentrations are based on repeated analysis (n = 3). As described above, we evaluated the validation of the concentrations of PCDD/DFs and DL-PCBs using

| Compound                   |               |                |       |                |        |                  |      |         |
|----------------------------|---------------|----------------|-------|----------------|--------|------------------|------|---------|
|                            | Ν             | MAE            |       |                |        | Certified value  |      |         |
|                            | Concentration |                |       | Average        | R.S.D. | Concentration    | S.D. | Z-score |
|                            |               | (pg/g dry wt.) | )     | (pg/g dry wt.) | %      | (pg/g dry wt.)   |      |         |
|                            |               |                |       |                |        |                  |      |         |
| 2,3,7,8-TeCDD              | 1.2           | 1.3            | 1.4   | 1.3            | 8.4    | $1.36 \pm 0.11$  | 0.19 | -0.25   |
| 1,2,3,7,8-PeCDD            | 7.7           | 7.3            | 7.9   | 7.6            | 3.6    | $7.71 \pm 0.45$  | 0.81 | -0.13   |
| 1,2,3,4,7,8-HxCDD          | 11            | 11             | 13    | 12             | 7.4    | $12.31 \pm 0.48$ | 0.83 | -0.95   |
| 1,2,3,6,7,8-HxCDD          | 25            | 26             | 29    | 27             | 7.5    | $28.9 \pm 1.2$   | 2.2  | -0.91   |
| 1,2,3,7,8,9-HxCDD          | 22            | 23             | 24    | 23             | 4.8    | $23.9 \pm 1.3$   | 2.4  | -0.40   |
| 1,2,3,4,6,7,8-HpCDD        | 611           | 649            | 698   | 653            | 6.7    | $702 \pm 41$     | 73   | -0.68   |
| OCDD                       | 11558         | 12304          | 12217 | 12026          | 3.4    | $12010 \pm 480$  | 835  | 0.02    |
| 2,3,7,8-TeCDF              | 11            | 13             | 14    | 13             | 10     | $12.01 \pm 0.92$ | 1.60 | 0.37    |
| 1,2,3,7,8-PeCDF            | 16            | 17             | 19    | 17             | 8.2    | $15.6 \pm 1.5$   | 2.8  | 0.60    |
| 2,3,4,7,8-PeCDF            | 15            | 16             | 19    | 17             | 13     | $17.2 \pm 1.3$   | 2.5  | -0.17   |
| 1,2,3,4,7,8-HxCDF          | 25            | 26             | 28    | 27             | 6.2    | $27.4 \pm 1.3$   | 2.5  | -0.33   |
| 1,2,3,6,7,8-HxCDF          | 22            | 22             | 25    | 23             | 7.6    | $24.4 \pm 1.0$   | 1.9  | -0.73   |
| 1,2,3,7,8,9-HxCDF          | 2.1           | 2.3            | 2.4   | 2.3            | 6.9    | $2.27 \pm 0.30$  | 0.50 | -0.03   |
| 2,3,4,6,7,8-HxCDF          | 37            | 37             | 39    | 37             | 4.4    | $36.7 \pm 3.4$   | 6.3  | 0.13    |
| 1,2,3,4,6,7,8-HpCDF        | 142           | 130            | 146   | 139            | 6.0    | $142 \pm 11$     | 21   | -0.14   |
| 1,2,3,4,7,8,9-HpCDF        | 21            | 20             | 24    | 22             | 9.5    | $22 \pm 2.0$     | 3.7  | -0.05   |
| OCDF                       | 234           | 235            | 259   | 243            | 5.8    | $254 \pm 12$     | 23   | -0.49   |
| #81 3,4,4',5-TeCB          | 120           | 133            | 142   | 132            | 8.6    | $149 \pm 12$     | 19   | -0.91   |
| #77 3,3',4,4'-TeCB         | 4865          | 5295           | 5823  | 5328           | 9.0    | $6020 \pm 430$   | 780  | -0.89   |
| #126 3,3',4,4',5-PeCB      | 62            | 61             | 65    | 63             | 3.1    | $64.4 \pm 6.2$   | 11.3 | -0.14   |
| #169 3,3',4,4',5,5'-HxCB   | 5.2           | 5.7            | 6.4   | 5.8            | 11     | $6.52 \pm 0.91$  | 1.58 | -0.46   |
| #123 2',3,4,4',5-PeCB      | 219           | 194            | 221   | 211            | 7.1    | $220 \pm 36$     | 65   | -0.13   |
| #118 2,3',4,4',5-PeCB      | 9204          | 8845           | 9506  | 9185           | 3.6    | $9600 \pm 1100$  | 1700 | -0.24   |
| #105 2,3,3',4,4'-PeCB      | 4070          | 3706           | 3911  | 3896           | 4.7    | $3850\pm300$     | 530  | 0.09    |
| #114 2,3,4,4',5-PeCB       | 264           | 197            | 282   | 248            | 18     | $311 \pm 47$     | 81   | -0.78   |
| #167 2,3',4,4',5,5'-HxCB   | 273           | 286            | 308   | 289            | 6.1    | $328 \pm 33$     | 60   | -0.65   |
| #156 2,3,3',4,4',5-HxCB    | 809           | 780            | 815   | 801            | 2.3    | $812 \pm 70$     | 127  | -0.08   |
| #157 2,3,3',4,4',5'-HxCB   | 186           | 195            | 215   | 199            | 7.5    | $212 \pm 23$     | 39   | -0.35   |
| #189 2,3,3',4,4',5,5'-HpCB | 55            | 54             | 59    | 56             | 4.7    | $61.3 \pm 6.9$   | 10.8 | -0.49   |
|                            |               |                |       |                |        |                  |      |         |

 Table 2
 Comparison of dioxins concentration in sediment certified material by microwave-assisted extraction with those of the certified value

the Z-score calculated with the interlaboratory standard deviation certified by The Japan Society for Analytical Chemistry. As a result, the Z-score of all the isomers of PCDD/DFs and DL-PCBs were within  $\pm$  2.00. It was also shown that the concentrations in the sediment corresponded statistically to the certified value. In addition, the relative standard deviations of the concentrations of PCDD/DFs and DL-PCBs obtained by our MAE method were below 18%.

#### References

- 1. "Manual for the Survey and Measurement of Dioxins in Soil," 2008, Soil Environment Management Division, Water/Air Environment Bureau, Environment Ministry, Tokyo, Japan.
- 2. "Manual for the Survey and Measurement of Dioxins in Sediment," 2008, Water Environment Management Division, Water/Air Environment Bureau, Environment Ministry, Tokyo, Japan.
- 3. T. Makino, T. Miyawaki, and K. Honda. BUNSEKI KAGAKU 2008, 57, 883.
- 4. T. Miyawaki, T. Makino, and K. Honda. BUNSEKI KAGAKU 2009, 58, 21.
- 5. H. Budzinski, M. Letellier, P. Garrigues, and K. Le Menach, J. Chromatogr. A. 1999, 837, 187.
- 6. J. S. Yang, D. W. Lee, and H. Lim, J. Liq. Chrom. & Rel. Technol. 2003, 26, 803.