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Introduction 
The higher the persistency is of a chemical the longer the compound will stay in the environment. Persistency is 

made up of the intrinsic properties of a compound, i.e. its physicochemical and chemical reactivity 

characteristics. The persistency is the abiotic parameter of a chemical that relate to the occurrence, partitioning 

and distribution of a chemical in each of the environmental compartments. Persistency is a key property for 

assessing the environmental fate of chemicals. The chemical reactivity of a compound is strongly influencing its 

bioaccumulative potential. The use of theoretical methods as alternative methods to estimate chemical 

characteristics has grown and become of importance for regulation, evaluation and risk assessment of 

chemicals
1
. Multimedia fate models are increasingly applied to understand and predict the environmental fate of 

organic contaminants
2
. Lately, such models have based their parameterisation of chemicals on linear solvation 

energy relationships (LSER)
3
 that account for molecular size and various solubility descriptors.  

We aim at developing user-friendly QSPRs where molecular descriptors are easily accessible and can be 

interpreted and understood on a chemical basis. In addition, the equations should have relevance and be 

attractive for multimedia modellers. Applying this integrated predictive methodology with the use of 

experimental reactivity and in silico methods should lead to major improvements in risk assessments of 

chemicals and to provide a tool for improved management of chemicals. 

 

Materials & Methods 

 
Experimental methods 

The experimental data provided for this study have been measured experimentally as described elsewhere
4,5

. The 

experimental data, shown in Table 1, was created by a single laboratory with the same method of oxidation and 

at a pH of 7.6. The differences in temperatures and solvent mixture (methanol and water) were present likely due 

to the large differences in reaction rates and solubility of these compounds. To normalize the data set we 

extrapolated the data to the same temperature (298K) using the Arrhenius equation and verified by duplicate 

experiments made for a few compounds at different temperatures while possible effects due to differences in 

solvent mixture could not be normalized. 

 

Theoretical methods 

Molecular structures were generated in the molecular modelling software Cache WorkSystem pro (Fujitsu 

Limited) or downloaded from ChemIdPlus (http://chem.sis.nlm.nih.gov/chemidplus/). The 3-dimensional 

structures of each chemical were geometry optimised with the use of energy minimisation with the semi-

empirical quantum mechanics MOPAC AM1 method. Three main methods were applied to calculate molecular 

descriptors; the Cache MOPAC AM1, the fragment based Linear Solvation Energy Relationship (LSER) 

method
6
 with the software ADME boxes v. 3.5 (Pharma Algorithms, Inc.) and the semi-empirical quantum 

mechanics based method TLSER
7
 using the software of MOPAC

8
 and MADCAP

7
 (kindly provided by Leland 

Y. Wilson). 
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Table 1. QSPR data-base with temperature normalized experimental data
a
 containing logarithmically transformed oxidation half-lives, calculated 

physicochemical data for all variables included in MLR models and predicted results for the regressions based on all variables
b
 and TLSER

c
 variables.  

 

Physicochemical variables Oxidation half-lives (log(1/t½))

Chemical Abbreviation pKa B Vm Ea Qh+ TotDip Hcharge DEOH Exp.a MLRb PLSb MLRc PLSc

Training set

2-bromophenol 2-BP 8.1 0.31 1.03 0.12 0.10 6.19 0.08 -8.0 -1.96 -1.80 -2.02 -1.87 -1.88

2,4-dibromophenol 24-DBP 8 0.23 1.27 0.18 0.23 4.65 0.10 -8.5 -2.36 -2.55 -2.68 -2.62 -2.69

2,6-dibromophenol 26-DBP 6.8 0.22 1.24 0.13 0.10 6.43 0.10 -8.4 -1.96 -2.59 -2.57 -2.57 -2.75

2,4,6-tribromophenol 246-TBP 6.7 0.15 1.45 0.13 0.12 6.77 0.12 -8.8 -2.79 -3.31 -3.16 -2.41 -3.06

2,3,4,6-tetrabromophenol 2346-TeBP 6.3 0.07 1.69 0.18 0.24 5.21 0.12 -9.0 -4.14 -3.54 -3.45 -2.96 -3.68

2,3,4-trichlorophenol 234-TCP 8.1 0.15 1.24 0.13 0.12 5.53 0.10 -8.5 -2.96 -2.71 -3.00 -2.45 -2.39

Bisphenol-A BPA 10.1 0.91 2.08 0.17 0.22 9.35 0.08 -13.7 -1.96 -2.00 -1.63 -2.29 -1.99

2,2',4-trichlorobisphenol-A TCBPA 6.5 0.4 2.64 0.15 0.22 10.6 0.05 -8.6 -1.15 -1.07 -1.17 -2.02 -1.81

3,3'-dibromodipheyl ether bde11 14 0.31 1.98 0.18 0.17 5.18 0.14 -14.2 -5.38 -4.69 -4.85 -4.90 -4.40

2,4,4'-tribromodiphenyl ether bde28 14 0.32 2.18 0.18 0.17 6.54 0.15 -14.3 -5.22 -4.94 -5.05 -4.81 -4.87

2,2',4,5'-tetrabromodiphenyl ether bde49 14 0.25 2.38 0.18 0.17 6.32 0.16 -14.3 -4.96 -5.33 -5.25 -5.22 -5.34

2,3',4,4'-tetrabromodiphenyl ether bde66 14 0.25 2.37 0.18 0.17 6.40 0.16 -14.3 -4.87 -5.32 -5.29 -5.17 -5.23

2,2',4,4',5-pentabromodiphenyl ether bde99 14 0.18 2.61 0.19 0.18 6.95 0.16 -14.4 -5.33 -5.48 -5.48 -5.62 -5.72

2,2',4,4',5,5'-hexabromodiphenyl ether bde153 14 0.11 2.76 0.19 0.18 6.80 0.17 -14.5 -5.70 -5.89 -5.90 -5.93 -6.09

6-OH-2,2',4-tribromodiphenyl ether 6-OH-bde17 7.7 0.38 2.24 0.15 0.17 8.26 0.12 -9.0 -2.51 -2.89 -2.76 -3.10 -2.64

6-OH-2,2',4,4'-tetrabromodiphenyl ether 6OH-BDE47 7.6 0.37 2.43 0.15 0.18 11.4 0.13 -9.1 -3.51 -3.19 -3.14 -2.21 -2.75

6'-OH-2,2',4,5'-tetrabromodiphenyl ether 6'-OH-BDE49 6.8 0.25 2.38 0.15 0.15 9.06 0.11 -8.9 -3.18 -2.90 -2.77 -3.49 -3.23

2'-OH-2,3',4,4'-tetrabromodiphenyl ether 2'-OH-BDE66 6.7 0.25 2.4 0.15 0.18 9.34 0.12 -9.1 -1.87 -3.20 -2.95 -2.82 -2.78

6-OH-2,2',3,4,4'-pentabromodiphenyl ether 6-OH-BDE85 7.6 0.23 2.62 0.15 0.17 9.15 0.14 -9.4 -4.21 -3.77 -3.58 -3.46 -3.45

6-OH-2,2',3,4,4',5-hexabromodiphenyl ether 6-OH-BDE137 6.3 0.04 2.81 0.15 0.17 9.47 0.14 -9.6 -4.53 -4.23 -3.94 -3.68 -3.88

Prediction set

2,4,6-trichlorophenol 246-TCP 6.3 0.15 1.24 0.13 0.12 4.71 0.12 -8.48 -2.88 -3.24 -3.07 -2.71 -2.32

2,2',4,4'-tetrabromobisphenol-A TBBPA 6.9 0.40 2.95 0.15 0.23 13.43 0.05 -8.83 -1.26 -1.12 -1.26 -1.42 -1.91

2,2',4-tribromodiphenyl ether bde17 14 0.32 2.23 0.18 0.16 6.51 0.14 -14.2 -5.46 -4.67 -4.83 -5.11 -4.95

2,2',4,4'-tetrabromodiphenyl ether bde47 14 0.26 2.41 0.18 0.17 7.01 0.16 -14.3 -4.92 -5.30 -5.25 -5.05 -5.33

4'-OH-2,2',4-tribromodiphenyl ether 4'-OH-BDE17 8.9 0.53 2.24 0.15 0.16 11.07 0.10 -8.75 -1.84 -2.02 -2.23 -2.41 -2.89

6-OH-2,2',3,4',5-pentabromodiphenyl ether 6-OH-BDE90 6.7 0.14 2.67 0.15 0.17 9.65 0.13 -9.38 -4.07 -3.73 -3.44 -3.38 -3.48

pKa = Acidic equlibrium constant; B = hydrogen bonding basicity parameter; Vm = McGowan's molecular volume; Ea = Covalent acidity; Qh+ = Electrostatic acidity 

Totdip = Total dipolar momentum; Hcharge = hydrogen with the lowest positive charge; DEOH = Energy difference of HOMO (substrate) and LUMO (OH radical) 
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The properties generated were variables describing molecules polarity, reactivity properties based on the 

energies of the frontier molecular orbitals (EHOMO and ELUMO) and atom specific properties such as charges, 

electron density, and electrophilic/nucleophilic/radical susceptibility calculated with semi-empirical quantum 

mechanics calculations. Quantum mechanical molecular properties based on the theory of TLSER
7
 included 

properties describing polarity, covalent/ electrostatic acidity and basicity, total, maximum, average dipole 

moments and molecular volume. Finally, LSER solute descriptors consist of the excess molar refraction, the 

polarizability, the effective hydrogen bond acidity and basicity, McGowan's volume. 

 
For the creation of QSPR models we used two software suites, ADME works model builder (Fujitsu Ltd) for 

variable selection using an genetic algorithm and for the creation of multiple linear regression equations (MLR) 

and Simca (ver 11.5, Umetrics, Inc) using the partial least square projection to latent structures (PLS). A training 

and prediction set was selected 20 + 6 chemicals where the prediction set was randomly selected based on 

activity sampling. 

 

Results and discussion 
To evaluate the persistency of a chemical in the environment one should take into account the major degradation 

routes in different environmental compartments such as oxidation, radical reactions and UV degradation in air 

and water, reduction in soil and sediments. In this work we have focused on oxidation and if the use of the linear 

solvation energy relationship (LSER) could be valuable as a relatively simple means for multimedia modelers to 

evaluate the reactivity of different chemicals. We have here calculated a large suit of different physicochemical 

properties based on semi-empirical quantum calculations to compare with properties calculated using LSER and 

TLSER by using two multiple regression methods to find correlations between physicochemical properties and 

the oxidation half-lives. MLR and PLS was used on all semi-empirically calculated variables and the TLSER 

variables as seen in Figure 1. The training set of 20 compound shows that the difference in regression results 

between using all calculated variables compared to only using TLSER variables is only slightly in favour for the 

modelling of all variables. This suggests that TLSER variables are enough to make some fair estimates of the 

oxidation potential of compounds when experimental data is unavailable. However, the LSER variables did not 

perform as well as the TLSER and gave no viable MLR or PLS models. The different regression methods used, 

MLR and PLS show no greater difference and give comparable results. Results from the prediction set, seen as 

triangles in Figure 1, well fits the models, giving models with a goodness of prediction Q
2
ext between 0.82-0.93 

which is an excellent result. With the use of MLR we constructed a linear mathematical model that relates the 

oxidation half-lives to the calculated physicochemical properties: 

 

Log(1/t1/2) = 0.9060  – 1.7016 × Vm – 42.1222 × Ea + 20.5695 × Qh+ 0.3186 × Totdip   (1) 

(n = 20, R
2
 = 0.81, F = 16.2, p < 2.6E-5, S

2
 = 0.70, R

2
ext = 0.88) 

 

Log(1/t1/2) = 1.3871 – 24.4328 × Hcharge + 0.2517 × DEOH + 1.9741 × B + 0.0221 × pKa   (2) 

(n = 20, R
2
 = 0.91, F = 36.5, p < 1.2E-7, S

2
 = 0.49, R

2
ext = 0.86) 

 
Equation 1 shows the MLR model based on the TLSER variables while eq. 2 shows the results for the MLR 

model based on all calculated physicochemical variables. 

Results show that the most important physicochemical properties being, in falling order of magnitude, the 

molecular volume (Vm), covalent acidity (Ea), electrostatic acidity (Qh+) and the total dipolar momentum 

(Totdip) the variable with the lowest importance. Eq. 2 on the other hand show an decrease in oxidation half-

times strongly correlated (with an correlation coefficient of R
2
=0.85) to the molecules that have an hydrogen 

connected to the phenyl ring with the lowest positive charge (Hcharge) suggesting a point where the molecule is 

most easily oxidized on the phenyl ring supplanting a hydrogen with a hydroxyl group (Ph-H to Ph-OH). The 

second most important variable is the energy difference between the EHOMO of the substrate and the ELUMO 

energies of a hydroxyl group (DEOH) or the potential for the substrate to have a nucleophilic reaction with water. 

Additional variables but with a decrease in importance is the hydrogen bonding basicity parameter (B) and pKa 

as ionized species at a pH of 7.6 are more easily oxidized. 
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Figure 1. Observed and predicted oxidation half-lives (log 1/t1/2) and the correlation coefficients for the 

compounds in the training set (    ) R
2
, the goodness of prediction Q

2
 and Q

2
ext for the prediction set (   ). a) MLR 

model using all calculated variables, b) MLR model using only TLSER variables, c) PLS model using all 

calculated variables, d) PLS model using TLSER variables. 
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