SPECIFIC ACCUMULATION OF HYDROXYLATED POLYCHLORINATED **BIPHENYLS (HO-PCBs) AND PCBs IN GREAT CORMORANT (PHALACROCORAX** CARBO) AT DIFFERENT STAGE OF EMBRYONIC DEVELOPMENT

Shiki Y¹, Hasegawa J², Kawano M¹, Matsuda M¹, Morita M¹

¹ Department of Environment Conservation, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8566, Japan

² National Institute of Animal Health, Kannondai 3-1-5 Tsukuba, Ibaraki, 305-0856, Japan

Introduction

Persistent organic pollutants (POPs) have been spread globally even to the polar region, and found in various trophic organisms. A wide variety of toxic effects may occur in human and wildlife due to the exposure to these chemicals. It is reported that some kinds of pathological effects appear to occur in thyroid of wild great cormorants in Japan, with indication that the issues may have caused by exposure to dioxins and/or dioxin-like PCBs¹⁾. Hydroxylated polychlorinated biphenyls (HO-PCBs) are known as thyroid hormone modulator and we speculated that they might be one of causative compounds. PCBs accumulated in organisms are metabolized to HO-PCBs as one of the major metabolic products. HO-PCBs are known to disturb thyroid hormone action by potentially interfering with the receptor-mediated transcription²⁾. Some HO-PCB congeners inhibit thyroid hormone-dependent dendritic development of cerebellar Purkinje cells in vitro³⁾. In human study, the materno-fetal transfer for HO-PCBs should be more significant during the period of pre-born child in a mother body rather than intake through breast milk after birth⁴). Since the adult great cormorants accumulate relatively high levels of HO-PCBs^{5,6)}, the effects of these compounds to during the period of pre-hatch for this species are particularly concerned. The purpose of this study was to determine the levels and profiles of HO-PCBs and to understand their behavior during embryonic development of great cormorants.

Materials and Methods

The eggs of great cormorants were collected in Lake Biwa, Shiga, Japan in May, 2007. Six egg samples were opened and divided into embryo, yolk, albumen and amnion. These samples were stored at -20° C until analysis.

The sample (2~8g) was homogenized and acidified with addition of hydrochloric acid (1mL) and isopropanol (1mL), and then ¹³C₁₂-labeled HO-PCB standards {4'-HO-CB 29, 4'-HO-CB61, 4'-HO-CB120, 4'-HO-CB159, 4-HO-CB187} and ¹³C₁₂-labeled PCBs (CB3, CB15, CB28, CB52, CB118, CB153, CB180, CB194) were spiked onto sample. HO-PCBs and PCBs were extracted in three times with acetonitrile (20mL) under acidic condition.

Hexane was added to acetonitrile extract for partition. Less polar constituents dissolved in the acetonitrile extract was transferred into hexane layer (20mL). The hexane layer, which contained PCBs, was treated with sulfuric acid treatment in order to remove the interfering substances. Acetonitrile layer was mixed in 400mL of 5% NaCl solution (less than pH2) and 50ml hexane. HO-PCBs was recovered in hexane layer and subjected to further clean-up procedures. The HO-PCBs was concentrated and then was passed through silica-gel column (3g; 5% water, w/w). PCBs were recovered with elution of 60mL hexane and put together hexane layer after sulfuric acid, and the PCBs fraction was concentrated under nitrogen gas flow for GC-MS analysis. HO-PCBs were recovered with elution of 100mL dichloromethane/hexane (30% v/v). HO-PCBs in this fraction were methylated with trimethylsilyl diazomethane. After the derivatization, the solution was purified with double layer column containing deactivated (5% water, w/w) silica-gel (2g; upper layer) and activated Florisil column (5g; lower layer). Methylated HO-PCBs were recovered with elution of 50mL dichloromethane/hexane (20% v/v) and concentrated under nitrogen gas flow for GC-MS analysis. The ¹³C₁₂-labeled standards (CB138) were spiked onto samples as syringe spike. HO-PCBs and PCBs were analyzed using HRGC (6890 series, Agilent, USA) / HRMS (JMS-800D, JEOL, Japan) at high resolution of 10,000 and selected-ion monitoring (SIM) mode.

HO-PCBs were quantified using MeO-PCB standards derivatized by the same procedure as samples. The peaks that matched the retention times and isotopic ratios of primary and secondary ions of those compounds in the standard solutions were quantified as "identified HO-PCBs" {(4'-HO-CB72, 4'-HO-CB26, 4-HO-CB107, 3-HO-CB153, 4-HO-CB146, 3'-HO-CB138, 4'-HO-CB130, 4-HO-CB187, 4'-HO-CB172}. The peaks that have different retention times from authentic standards but have the same isotopic ratios of primary and secondary ions were considered as "unidentified HO-PCB congeners". The sum of identified HO-PCBs and unidentified HO-PCBs was referred to total HO-PCBs. Recovery rate of the ¹³C₁₂- HO-PCBs and ¹³C₁₂- PCBs congeners were 47-88% and 57-104%, respectively, throughout the whole procedures.

Results and Discussion

HO-PCBs and PCBs were detected in all samples analyzed. Sample weight and the HO-PCBs and PCBs concentrations are presented in Table 1. In the study, embryo weight was regarded as an indicator of growth development. Each egg numbers were given in the order of development, for example egg 1 was the earliest stage of growth development, and egg 6 was the latest stage of one. It should be noted that egg 1 consisted of only yolk and albumen, which indicates nearly fresh-laid or unfertilized egg.

		Lgg I			La	g 2		Egg 5				
		Yolk	Albumen	Amniotic fluid	Yolk	Embryo	Albumen	Amniotic fluid	Yolk	Embryo	Albumen	
weight		10.8	12.2	2.16	9.22	2.61	6.98	5.03	6.98	3.8	7.4	
3Cl	4'HO-CB26	27	<1.0	<1.0	190	12	<1.0	<1.0	61	<1.0	<1.0	
4Cl	4'HO-CB72	49	2.6	31	69	7.4	2.9	22	150	30	<1.0	
5Cl	4HO-CB107	75	7.6	32	<1.0	72	9.1	14	<1.0	24	<1.0	
6C1 7C1	3HO-CB153	1,800	281	1,100	5,000	4,200	150	370	1,100	820	50	
	4HO-CB146	290	51	150	710	450	16	66	180	130	9.4	
	3'HO-CB138	300	54	160	1,100	580	39	46	260	110	8.4	
	4'HO-CB130	92	16.4	100	320	370	12	34	54	58	3.1	
	4HO-CB187	960	106	550	3,000	1,600	83	190	330	470	26	
	4'HO-CB172	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Total H	O-PCB(pg/g wet wt.)	8,600	970	3,900	29,000	12,000	720	1,900	8,100	4,000	190	
Total PCB(ng/g wet wt.)		700	20.8	20	2,400	330	170	35.9	1,000	99	1.1	
HO-PCB/PCB		0.0123	0.0466	0.195	0.0121	0.0364	0.00424	0.0529	0.0081	0.0404	0.173	
			Egg 4			Egg 5			Egg 6			
		Amniotic fluid	Yolk	Embryo	Albumen	Amniotic fluid	Yolk	Embryo	Amniotic fluid	Yolk	Embryo	
	weight	10.0					0.01	10.4	1.07		15.2	
		12.8	7.7	7.84	2.9	11.7	9.21	10.4	4.96	6.8	13.2	
3Cl	4'HO-CB26	12.8 <1.0	7.7 <1.0	7.84 <1.0	2.9 <1.0	11.7 5.3	9.21 250	10.4	4.96	6.8 140	23	
3Cl 4Cl	4'HO-CB26 4'HO-CB72	<12.8 <1.0 2.9	7.7 <1.0 120	7.84 <1.0 23	2.9 <1.0 1.8	11.7 5.3 2.5	9.21 250 81	10.4 19 13	4.96 12 9.7	6.8 140 67	23 17	
3Cl 4Cl 5Cl	4'HO-CB26 4'HO-CB72 4HO-CB107	<1.0 2.9 13	7.7 <1.0 120 25	7.84 <1.0 23 81	2.9 <1.0 1.8 2.1	11.7 5.3 2.5 44	9.21 250 81 <1.0	10.4 19 13 250	4.96 12 9.7 33	6.8 140 67 <1.0	23 17 150	
3Cl 4Cl 5Cl	4'HO-CB26 4'HO-CB72 4HO-CB107 3HO-CB153	12.8 <1.0 2.9 13 170	7.7 <1.0 120 25 1,900	7.84 <1.0 23 81 1,300	2.9 <1.0 1.8 2.1 2.9	11.7 5.3 2.5 44 870	9.21 250 81 <1.0 6,600	10.4 19 13 250 6,600	12 9.7 33 540	6.8 140 67 <1.0 4,400	13.2 23 17 150 4,100	
3Cl 4Cl 5Cl	4'HO-CB26 4'HO-CB72 4HO-CB107 3HO-CB153 4HO-CB146	12.8 <1.0 2.9 13 170 56	7.7 <1.0 120 25 1,900 130	7.84 <1.0 23 81 1,300 370	2.9 <1.0 1.8 2.1 2.9 63	11.7 5.3 2.5 44 870 190	9.21 250 81 <1.0 6,600 690	10.4 19 13 250 6,600 1200	4.96 12 9.7 33 540 95	6.8 140 67 <1.0 4,400 260	13.2 23 17 150 4,100 650	
3Cl 4Cl 5Cl 6Cl	4'HO-CB26 4'HO-CB72 4HO-CB107 3HO-CB153 4HO-CB146 3'HO-CB138	12.8 <1.0 2.9 13 170 56 21	7.7 <1.0 120 25 1,900 130 430	7.84 <1.0 23 81 1,300 370 140	2.9 <1.0 1.8 2.1 2.9 63 10	11.7 5.3 2.5 44 870 190 110	9.21 250 81 <1.0 6,600 690 2,200	10.4 19 13 250 6,600 1200 830	4.96 12 9.7 33 540 95 81	6.8 140 67 <1.0 4,400 260 1,200	13.2 23 17 150 4,100 650 400	
3Cl 4Cl 5Cl 6Cl	4'HO-CB26 4'HO-CB72 4HO-CB107 3HO-CB153 4HO-CB146 3'HO-CB138 4'HO-CB130	12.8 <1.0 2.9 13 170 56 21 16	7.7 <1.0 120 25 1,900 130 430 50	7.84 <1.0 23 81 1,300 370 140 110	2.9 <1.0 1.8 2.1 2.9 63 10 9.5	11.7 5.3 2.5 44 870 190 110 72	9.21 250 81 <1.0 6,600 690 2,200 360	10.4 19 13 250 6,600 1200 830 640	4.96 12 9.7 33 540 95 81 40	6.8 140 67 <1.0 4,400 260 1,200 97	13.2 23 17 150 4,100 650 400 360	
3Cl 4Cl 5Cl 6Cl	4HO-CB26 4HO-CB72 4HO-CB107 3HO-CB133 4HO-CB138 4HO-CB130 4HO-CB187	12.8 <1.0 2.9 13 170 56 21 16 130	7.7 <1.0 120 25 1,900 130 430 50 350	7.84 <1.0 23 81 1,300 370 140 110 980	2.9 <1.0 1.8 2.1 2.9 63 10 9.5 39	11.7 5.3 2.5 44 870 190 110 72 810	9.21 250 81 <1.0 6,600 690 2,200 360 2,300	10.4 19 13 250 6,600 1200 830 640 3,200	4.96 12 9.7 33 540 95 81 40 170	6.8 140 67 <1.0 4,400 260 1,200 97 440	13.2 23 17 150 4,100 650 400 360 2,200	
3Cl 4Cl 5Cl 6Cl 7Cl	4HO-CB26 4HO-CB72 4HO-CB107 3HO-CB153 4HO-CB138 4HO-CB138 4HO-CB130 4HO-CB187 4HO-CB172	12.8 <1.0 2.9 13 170 56 21 16 130 <1.0	$7.7 < 1.0 120 25 1,900 130 430 50 350 <1.0 }$	7.84 <1.0 23 81 1,300 370 140 110 980 <1.0	2.9 <1.0 1.8 2.1 2.9 63 10 9.5 39 <1.0	11.7 5.3 2.5 44 870 190 110 72 810 <1.0	9.21 250 81 <1.0 6,600 690 2,200 360 2,300 <1.0	10.4 19 13 250 6,600 1200 830 640 3,200 <1.0	4.96 12 9.7 33 540 95 81 40 170 <1.0	6.8 140 67 <1.0 4,400 260 1,200 97 440 <1.0	13.2 23 17 150 4,100 650 400 360 2,200 <1.0	
3Cl 4Cl 5Cl 6Cl 7Cl Total H0	4HO-CB26 4HO-CB72 4HO-CB107 3HO-CB153 4HO-CB146 3'HO-CB138 4'HO-CB138 4'HO-CB130 4'HO-CB172 O-PCB(pgg wet wt.)	12.8 <1.0 2.9 13 170 56 21 16 130 <1.0 820	7.7 <1.0 120 25 1,900 130 430 50 350 <1.0 8,100	7.84 <1.0 23 81 1,300 370 140 110 980 <1.0 6,400	2.9 <1.0 1.8 2.1 2.9 63 10 9.5 39 <1.0 210	11.7 5.3 2.5 44 870 190 110 72 810 <1.0 3,000	9.21 250 81 <1.0 6,600 690 2,200 360 2,300 <1.0 30,000	10.4 19 13 250 6,600 1200 830 640 3,200 <1.0 30,000	4.96 12 9.7 33 540 95 81 40 170 <1.0 2,300	6.8 140 67 <1.0 4,400 260 1,200 97 440 <1.0 19,000	13.2 23 17 150 4,100 650 400 360 2,200 <1.0 15,000	
3Cl 4Cl 5Cl 6Cl 7Cl Total H0 Total H0	4HO-CB26 4'HO-CB72 4HO-CB107 3HO-CB153 4HO-CB146 3'HO-CB146 3'HO-CB187 4'HO-CB187 4'HO-CB187 4'HO-CB172 O-PCB(pg'g wet wt.)	12.8 <1.0 2.9 13 170 56 21 16 130 <1.0 820 96.9	7.7 <1.0 120 25 1,900 130 430 50 350 <1.0 8,100 2,710	7.84 <1.0 23 81 1,300 370 140 110 980 <1.0 6,400 419	2.9 <1.0 1.8 2.1 2.9 63 10 9.5 39 <1.0 210 76.8	11.7 5.3 2.5 44 870 190 110 72 810 <1.0 3,000 89	9.21 250 81 <1.0 6,600 690 2,200 360 2,300 <1.0 30,000 29,000	10.4 19 13 250 6,600 1200 830 640 3,200 <1.0 30,000 430	1.96 12 9.7 33 540 95 81 40 170 <1.0 2,300 190	$\begin{array}{c} 6.8 \\ 140 \\ 67 \\ <1.0 \\ 4,400 \\ 260 \\ 1,200 \\ 97 \\ 440 \\ <1.0 \\ 19,000 \\ 33,000 \end{array}$	13.2 23 17 150 4,100 650 400 360 2,200 <1.0 15,000 1,100	

 Table 1.
 Concentrations of HO-PCBs (pg/g ww) and PCBs (ng/g ww) in eggs of great cormorant.

*The sum of identified HO-PCBs (4'-HO-CB72, 4'-HO-CB26, 4-HO-CB107, 3-HO-CB153, 4-HO-CB146, 3'-HO-CB138, 4'-HO-CB130, 4-HO-CB187, 4'-HO-CB172) and unidentified HO-PCBs was referred to total HO-PCBs.

Median and range of total HO-PCBs and PCBs concentrations in each part of eggs were shown in Fig.1. The concentrations of both HO-PCBs and PCBs were in the order of yolk > embryo > amniotic fluid > albumen. The levels of PCBs in the yolk were considerably higher than other parts of eggs. This is likely attributed to the fact that PCBs are lipophilic and yolk contains relatively high amount of lipids. Similar trend of distinct deposition of PCBs in egg yolk have been reported in the domestic chicken ^{7,8}. In contrast, the levels of HO-PCBs in the yolk were comparable to the embryo. Previously, the occurrence of HO-PCBs in eggs of wild birds such as gulls and raptors have been reported ^{9,10}, but the results were based on analysis of whole egg homogenate. To date, the data about distribution of HO-PCBs in avian egg have not been reported as far we are concerned. HO-PCBs burden in the yolk of egg 1 not identified embryo, indicating the maternal transfer to the eggs. HO-PCBs burden in the yolk of egg 1 accounted for approximately 90% of the total burden in the whole egg (yolk plus albumen). Interestingly, it was found that 95% of thyroxine mass of chicken fresh-laid egg is contained in yolk ¹¹. It is assumed that some HO-PCBs which structurally resemble to thyroid hormone would be transferred into egg by means of similar mechanism.

Thus, it seems that not only lipophilicity but also other factors such as protein binding should be accounted for the distribution and behavior of HO-PCBs in egg. HO-PCBs are phenolic weak acids, and it is expected that some fractions of them are present as ionized form in vivo according to their pK_a values¹².

Fig. 1. Median and range of total HO-PCBs and PCBs concentrations in each part of eggs.

And the fact that some HO-PCBs have strong affinity to TTR is well known¹²⁾. Nevertheless, HO-PCBs have certain degree of lipophilic character, for example log K_{ow} values of 4-HO-CB146 and 4-HO-CB187 were estimated at 5.9 ± 0.4 and 6.9 ± 0.4, respectively¹²⁾. Meanwhile, Sandermann¹³⁾ investigated partitioning between non-polar triglycerides and polar phospholipids for 20 xenobiotics using trioleoylglycerol (TG) and egg yolk phosphatidylcholine (PC). The results showed that the partitioning coefficients ($K_{TG/PC}$) values of penta-PCB and 2,4,6-trichlorophenol were calculated as 5.9 and 0.48, respectively. Therefore, it is suspected that HO-PCBs particularly lower chlorinated ones possibly have relatively higher affinity to phospholipids rather than triglycerides. The described presumption might be attributed to the distribution of HO-PCBs in egg and their absorption to embryo, as egg yolk contains relatively abundant phospholipids.

The composition of both HO-PCBs and PCBs were mainly consisted of penta, hexa and hepta-chlorinated congeners in all samples. The ratio of HO-PCBs/PCBs was 1/100 -1000, which is similar to the case of organ tissues of adult great cormorant ⁵⁾. In the previous paper, we reported that HO-PCBs were mainly distributed in blood with an average concentration was 2 ng/g wet weight in adult great cormorants at same region ⁵⁾. Meanwhile, the concentrations of HO-PCBs in the embryo analyzed in the present study ranged from 4 to 30 ng/g wet weight. These results imply that the developing embryos of this species could be more exposed to the high levels of HO-PCBs than adults.

Fig. 2. Variation of ratios of embryo HO-PCB /whole egg HO-PCBs burdens and ratios of embryo PCB /whole egg PCBs burdens at different embryonic growth stages.

Variation of ratios of embryo HO-PCBs /whole egg HO-PCBs burdens, ratios of embryo PCBs /whole egg PCBs burdens and ratios of yolk /whole egg weight at different embryonic growth stages were shown in Fig. 2. The ratios of yolk weight were obviously decreasing according to embryonic development. A gradual uptake and exponentially accumulation of PCBs with increasing lipid absorption in chicken embryo especially during the late stage of development have been observed ^{7, 8)}. As shown in Table 1, the concentration of PCBs in the cormorant embryo at latest growth stage was elevated compared to other growth stage. In contrast, the ratios of PCBs burdens in embryo were no significantly different through during these growth stages. It appears that a significant amount of PCBs mass remained external to the embryo peculiarly yolk until these stage

of development. Bargar et al.⁷⁾ reported that greater than 70% of the PCB (PCB105, 156, and 189) burden in the chicken whole egg remained with in the yolk through 19 day of embryonic development (90% of incubation).

On the other hand, the ratios of HO-PCB burden in embryo were increased gradually according to the embryo development. There are two possible explanations for this process: firstly, HO-PCBs moves to embryo from other parts in egg mainly yolk, and secondly, embryo acquires metabolic capability during the growth and more HO-PCBs were formed from PCBs. In ovo exposure experiment using chicken embryo, it has been shown that PCB77-induced hepatic aryl hydrocarbon hydroxylase activity was significantly increased from early incubation stage (embryonic day 7) through the hatching (day 21), with a maximum at middle stage (day 14). Actually, some congeners of hydroxylated metabolites have been found in the gallbladder of the late stage of chicken embryo exposed to PCB77 in ovo ¹⁵⁾. It is assumed that the formation of HO-PCBs could be more accelerated in the late growing stage, since substantial amount of PCBs is transferred into embryo during the period as described above. However, it must be noted that the involvement of individual variability is not negligible for the observation in the present study because our sample size was quite limited, and more research is needed.

Only few studies have been reported on the toxic effects of HO-PCBs on avian embryo. It was found that Japanease quail exposed to 4-HO-CB107 and 4-HO-CB187 in ovo was neither affected reproductive variables nor plasma thyroid hormone levels despite considerably high dose levels (up to 750 μ g/egg), but high mortality of early embryo was evidently exhibited at the higher dose ¹⁶. On the other hand, in ovo exposure to 4'-HO-CB50 (10-1,000 ng/g egg), which known to be possess relatively high estrogenic activity, caused dose-dependent reduction of reproductive tract size after sexual maturation of hatched quail chicks¹⁷). Thus the toxic effects of HO-PCBs seem to depend on its chemical structure. Since it was confirmed that the cormorant embryo analyzed in this study accumulated various HO-PCB congeners consisted of many unidentified ones, possible multiple effects are notably concerned.

Our results provided the valuable information to consider HO-PCBs exposure in avian embryonic growth stage, and suggested that the distribution and behavior of HO-PCBs in the egg is quite different from those of PCBs. Further research is necessary to identify individual congeners for understanding toxic effect of HO-PCBs.

Acknowledgements

The authors are grateful to Dr. Akiko Sudo and the staffs of Eaglet Office Inc. for assistance in sampling. The authors also wish to express their sincere appreciation all those who contributed to this study. This work was supported by the Global Environment Research Fund(C-083) of the Ministry of the Environment, Japan.

References

- 1. Saita E, Hayama S, Kajigaya H, Yoneda K, Watanabe G, Taya K. J Wildl Dis. 2004; 40:763-8.
- 2. Miyazaki W, Iwasaki T, Takeshita A, Kuroda Y, Koibuchi N. J Biol Chem. 2004; 279:18195-202.
- 3. Kimura-Kuroda J, Nagata I, Kuroda Y. Chemosphere. 2007; 67:S412-20.
- 4. Enomoto T, Nishio Y, Hasegawa J, Kato H, Miura H, Matsuda M, Kawano M, Wakimoto T, Morita M. Organohalogen Compd, 2007; 69:2022-5.
- 5. Shiki Y, Hara A, Enomoto T, Hasegawa J, Matsuda M, Kawano M, Morita M. Organohalogen Compd, 2007; 69:1499-502.
- 6. Hasegawa J, Matsuda M, Ohnishi H, Enomoto T, Kawano M, Wakimoto T. *Organohalogen Compd*, 2007; 69:1495-8.
- 7. Bargar TA, Scott GI, Cobb GP. Arch Environ Contam Toxicol. 2001; 41:508-14.
- 8. Maervoet J, Beck V, Roelens SA, Covaci A, Voorspoels S, Geuns JM, Darras VM, Schepens P. *Environ Toxicol Chem.* 2005; 24:597-602.
- 9. Fängström B, Athanasiadou I, Athanasiadou M, Weihe P, Bergman Å. *Ambio.* 2005; 34:184-7.
- 10. Berger U, Herzke D, Sandanger TM. Anal Chem. 2004; 76:441-52.
- 11. McNabb FM and Wilson CM. Amer Zool. 1997; 37:553-60.
- 12. Malmberg T, Hoogstraate J, Bergman Å, Klasson-Wehler E. Xenobiotica. 2004; 34:581-9.
- 13. Sandermann H Jr. FEBS Lett. 2003; 554:165-8.
- 14. Hamilton JW, Denison MS, Bloom SE. Proc Natl Acad Sci. 1983; 80:3372-6.
- 15. Klasson-Wehler E, Brunström B, Rannug U, Bergman Å. Chem Biol Interact. 1990; 73:121-32.
- 16. Halldin K, Bergman Å, Brandt I, Brunström B. Avian Poult Biol Rev. 2005; 16:11-7.
- 17. Kamata R, Takahashi S, Shimizu A, Morita M, Shiraishi F. Arch Toxicol. 2006; 80:857-67.