Concentrations of dioxin and related chemicals in blood and breast milk collected from 125 mothers in Hokkaido, Japan

<u>Kajiwara J</u>¹, Todaka T², Hirakawa H¹, Hori T¹, Yasutake D¹, Onozuka D¹, Washino N³, Konishi K³, Sasaki S³, Yoshioka E³, Yuasa M³, Kishi R³, Iida T^{1*}, Yoshimura T¹, and Furue M²

¹Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu-city, Fukuoka 818-0135, Japan; ²Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka-city 812-8582, Japan; ³Department of Public Health, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 5, Kita-ku, Sapporo-city, 060-8638, Japan

* Kitakyushu Life Science Center, 1-4 Nakabarushinmati, Tobata-ku, Kitakyushu-city, 804-0003, Japan

Introduction

Dioxin and related chemicals, including polychlorinated dibenzo-*p*-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), non-*ortho* coplanar polychlorinated biphenyls (non-*ortho* PCBs), and mono-*ortho* coplanar polychlorinated biphenyls (non-*ortho* PCBs) are known as endocrine disrupters and widespread environmental contaminants. They are accumulated in the human body through the food chain¹ and are present in the blood and breast milk. The effects of dioxin and related chemicals present in the blood of pregnant women and breast milk have been of great concern in the field of public health, and there is strong interesting determining the influence of these chemicals on the health of fetuses and infants.

In this study, we determined the concentrations of PCDDs, PCDFs, non-*ortho* PCBs and mono-*ortho* PCBs in the blood of pregnant women and in breast milk from the same mothers collected between 2002 and 2005 from 125 mothers living in Hokkaido, Japan. We also investigated the relationship between concentrations of PCDDs, PCDFs, and dioxin-like PCBs in the blood and the breast milk.

Materials and Methods

The blood and breast milk samples were collected between 2002 and 2005 from 125 mothers who had given their informed consent. The blood samples were collected from the maternal peripheral vein after the second trimester during their last pregnancy. The maternal milk specimens were collected one month after delivery. The mother's ages ranged from 21 to 47 (mean: 31.3). After collection, the blood and breast milk samples were stored at -30°C until analyses for concentrations of PCDDs, PCDFs, and dioxin-like PCBs.

The extraction of PCDDs, PCDFs, and dioxin-like PCBs from the samples was performed using a previously reported method^{2,3}. Concentrations of the PCDDs, PCDFs and dioxin-like PCBs were measured using high-resolution gas chromatography/high-resolution mass spectrometry with a solvent cut large-volume injection system^{2,3}. To estimate the total toxic equivalents (TEQ) concentration, we introduced ND (less than the detection limit) values to half values of the detection limit and the estimates based on the toxic equivalency factor (TEF) values proposed by the World Health Organization (WHO) in 2005.

Results and discussion

The arithmetic mean total TEQ concentrations of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs of the blood and breast milk were 16.1 (median: 14.7) and 10.6 (median: 9.6) pg TEQ/g lipid, respectively, and the concentrations were in the range of 3.4-42.9 and 2.7-41.1 pg TEQ/g lipid, respectively (Table 1). The breast milk mean total TEQ concentration was about 34% lower than that of the blood. The TEQ concentrations of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs in the blood were 7.8, 2.8, 5.1, and 0.2 pg TEQ/g lipid, and in the breast milk were 4.5, 1.9, 3.8, and 0.4 pg TEQ/g lipid, respectively. The TEQ concentrations of PCDDs, PCDFs, and non-*ortho* PCBs in the breast milk were 43, 33, and 23 % lower than those in the blood, while the TEQ concentration of mono-*ortho* PCBs in the breast milk was similar to that in the blood. Dominant congeners of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs in the breast milk was similar to those in the breast milk. Significant positive correlations between concentrations of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs in the blood were similar to those in the breast milk. Significant positive correlations between concentrations of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs in the blood were similar to those in the breast milk. Significant positive correlations between concentrations of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs in the blood were similar to those in the breast milk.

	Blood (n=125, pg/g lipid)					Breast milk (n=125, pg/g lipid)					Ratio
Congeners	Mean	SD	Max	Min Median		Mean	SD	Max	Min	Median	(milk/blood)
2,3,7,8-TCDD	1.0	0.6	3.1	ND	1.0	0.6	0.3	2.8	ND	ND	0.61
1,2,3,7,8-PeCDD	4.5	1.9	12	ND	4.3	2.7	1.3	8.9	ND	2.6	0.60
1,2,3,4,7,8-HxCDD	1.8	1.0	5.8	ND	ND	1.1	0.3	3.2	ND	ND	0.60
1,2,3,6,7,8-HxCDD	15	7.5	44	2.4	14	8.3	4.0	25.3	ND	7.3	0.55
1,2,3,7,8,9-HxCDD	2.2	1.4	7.4	ND	2.1	1.2	0.5	3.8	ND	ND	0.53
1,2,3,4,6,7,8-HpCDD	27	11	71	9.6	24	5.7	3.4	23.5	2.1	5.0	0.21
OCDD	476	187	1392	189	432	43	33	251	8.2	34	0.09
Total PCDD	528	204	1500	211	481	63	40	308	19.3	52	0.12
2,3,7,8-TCDF	0.8	0.4	2.5	ND	ND	0.5	0.2	1.9	ND	ND	0.70
1,2,3,7,8-PeCDF	0.6	0.3	2.2	ND	ND	0.5	0.1	1.1	ND	ND	0.88
2,3,4,7,8-PeCDF	6.4	3.1	20	ND	5.8	4.5	2.3	18.5	ND	4.2	0.71
1,2,3,4,7,8-HxCDF	2.6	1.5	12	ND	2.5	1.1	0.5	3.8	ND	ND	0.43
1,2,3,6,7,8-HxCDF	2.8	1.5	7.0	ND	2.6	1.2	0.6	5.5	ND	ND	0.42
2,3,4,6,7,8-HxCDF	1.1	0.4	3.7	ND	ND	1.0	0.1	2.5	ND	ND	0.90
1,2,3,7,8,9-HxCDF	ND					ND					
1,2,3,4,6,7,8-HpCDF	3.0	2.9	20	ND	2.5	1.2	0.9	6.8	ND	ND	0.40
1,2,3,4,7,8,9-HpCDF	ND					ND					
OCDF	2.1	0.8	11.4	ND	ND	ND					
Total PCDF	21	7.8	52	9.5	20	15	3.6	38	10	14	0.68
344'5-TCB(#81)	ND					ND					
33'44'-TCB(#77)	13	5.6	37.2	ND	13.1	5.4	2.4	29.0	ND	ND	0.40
33'44'5-PenCB(#126)	42	24	142	ND	35.8	34	21	156	ND	29	0.81
33'44'55'-HxCB(#169)	31	16	86	ND	28.5	19	10	64	ND	17	0.60
Total Non-ortho PCBs	91	40	270	27	86	63	31	254	ND	57	0.69
2'344'5-PeCB(#123)	134	77	459	24	115	113	72	531	ND	99	0.84
23'44'5-PeCB(#118)	7060	3564	18746	1325	6182	7006	3936	29091	1440	6219	0.99
2344'5-PeCB(#114)	436	242	1695	87	405	400	226	1708	94	361	0.92
233'44'-PeCB(#105)	1732	880	5051	444	1480	1712	953	6952	303	1542	0.99
23'44'55'-HxCB(#167)	866	433	2275	159	812	706	427	3184	169	629	0.81
233'44'5-HxCB(#156)	2369	1169	6428	441	2127	2003	1145	7839	419	1746	0.85
233'44'5'-HxCB(#157)	583	292	1783	88	527	463	257	1858	102	406	0.79
233'44'55'-HpCB(#189)	287	135	807	63	269	181	103	671	47	162	0.63
Total Mono-ortho PCBs	13480	6393	36266	3231	12651	12583	6872	51833	2762	11603	0.93
PCDDs-TEQ	7.8	3.2	20.8	1.7	7.2	4.5	2.0	15.0	1.3	4.1	0.57
PCDFs-TEQ	2.8	1.2	7.8	0.6	2.6	1.9	0.8	7.0	0.6	1.7	0.67
PCDDs/PCDFs-TEQ	10.6	4.3	27.8	2.6	9.9	6.3	2.7	22.1	2.0	5.9	0.59
Non-ortho PCBs-TEQ	5.1	2.8	16.8	0.7	4.6	3.9	2.3	17.5	0.7	3.4	0.77
Mono-ortho PCBs-TEQ	0.4	0.2	1.1	0.0	0.4	0.4	0.2	1.6	0.1	0.3	0.99
Coplanar PCBs-TEQ	5.5	2.9	17.8	0.8	4.9	4.3	2.5	19.0	0.7	3.7	0.78
Total TEQ	16.1	6.7	42.9	3.4	14.7	10.6	4.9	41.1	2.7	9.6	0.66
Age	31.3	5.13	47	21	32	31.3	5.13	47	21	32	
Lipid(%)	0.38	0.08	0.72	0.26	0.37	4.26	1.39	8.37	0.85	4.14	

Table 1. Concentrations of PCDDs, PCDFs, and dioxin-like PCBs in the blood of pregnant women and breast milk.

ND: less than the determination limit; SD: standard deviation.

TEQconcentrations were computed by using 2005 WHO toxic equivalency factor (TEF) values.

Fig. 1 Relationships between PCDDs, PCDFs, non-ortho PCBs, and mono-ortho PCBs concentratins in blood and breast milk.

These results suggest that PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs accumulated in the blood can be transferred to the breast milk. Mono-ortho PCBs were easily transferred from blood to breast milk, but PCDDs, PCDFs, and non-*ortho* PCBs were not easily transferred to breast milk. Moreover, the concentrations of 1,2,3,4,6,7,8-HpCDD and OCDD in the breast milk were 5.7 and 43 pg/g lipid(range of 2.1-24 and 8.2-251 pg/g lipid), respectively, and significantly lower than those in the blood. Concentration ratios of each congener of PCDDs, PCDFs, non-*ortho* PCBs, and mono-*ortho* PCBs in breast milk to blood tended to decrease with higher chlorinated congeners.

In this study, we measured the concentrations of PCDDs, PCDFs, non-*ortho* PCBs and mono-*ortho* PCBs in the blood of pregnant women and breast milk of the same mothers. These results will be used as basic data for the study of the influence of dioxin and related chemicals on the health of fetuses and infants.

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Health Labour and Welfare, Japan.

Reference

- 1. Chen HL, Lee CC, Liao PC, Guo YL, Chen CH, Su HJ. Environ. Res. 2003; 91: 172
- 2. Todaka T, Hirakawa H, Tobiishi K, Iida T. Fukuoka Igaku Zasshi 2003; 94: 148
- Hori T, Tobiishi K, Ashizuka Y, Nakagawa R, Todaka T, Hirakawa H, Iida T. Fukuoka Igaku Zasshi 2005; 96(5): 220
- 4. Iida T, Hirakawa H, Matsueda T, Takenaka S, Nagayama J. Chemosphere 1999; 38(15): 3497