IDENTIFICATION AND QUANTIFICATION METHOD FOR POLYBROMINATED DIOXINS IN STATIONARY SOURCE EMISSIONS

CHACHIGNON Mathilde¹, FROLOV Irina², LEROY Géraldine¹, FAROT Olivier², MANCIOT Francine¹, FIANI Emanuel³

¹CAE (Centre d'analyses environnementales), 1 Place de Turenne, 94417 Saint-Maurice, France

²DIOXLAB, 1 Place de Turenne, 94417 Saint-Maurice, France

³ADEME (Agency for Environment and Energy Management), 20 Avenue du Grésillé, 49004 Angers, France

Introduction

Emissions of chlorinated dioxins/furans are determined in Europe by application of the standard EN 1948. The emission limit value of chlorinated dioxins is 0.1 ng I-TEQ/Nm³. More and more studies have shown the existence of brominated dioxins in stationary source emissions and shown that toxicity of theses molecules can be similar to chlorinated dioxins. The aim of the study, that DIOXLAB and CAE have realized with ADEME support is to develop a method for identification and quantification of polybrominated dioxins/furans (PBDD/Fs). The determination of the mass concentration of PBDD/F in flue gas includes optimization of several steps : sampling, sample preparation and analytical conditions. This paper exposes optimization of analytical parameters for detection of PBDD/Fs. Targeted molecules are 17 PBDD/Fs homologues of the 17 chlorinated toxic congeners.

Materials and methods

Mixtures

Polybrominated dioxins are less studied than polychlorinated dioxins. Then, all standard mixtures for PBDDs/Fs analyses are not available on the market. Table 1 shows the available standard of PBDD/F mixtures compared to chlorinated compounds. When no native or labeled molecule exists, quantification will be carried out by total homologue congener calculation.

The mixture used for optimization of the method is the solution CS6 of the mixture EDF-5381. This mixture contains following labeled and native analytes.

Chlorinated Native	Native brominated dioxins	Labeled brominated dioxins	Type of standard
2,3,7,8-TeCDD	2,3,7,8-TeBDD	¹³ C ₁₂ -2,3,7,8-TeBDD	Cleanup standard
1,2,3,7,8-PeCDD	<u>1,2,3,7,8-PeBDD</u>	¹³ C ₁₂ -1,2,3,7,8-PeBDD	Cleanup standard
1,2,3,4,7,8-HxCDD	<u>1,2,3,4,7,8-HxBDD</u>	¹³ C ₁₂ -1,2,3,4,7,8-HxBDD	Cleanup standard
1,2,3,6,7,8-HxCDD	<u>1,2,3,6,7,8-HxBDD</u>	¹³ C ₁₂ -1,2,3,6,7,8-HxBDD	Cleanup standard
1,2,3,7,8,9-HxCDD	<u>1,2,3,7,8,9-HxBDD</u>	¹³ C ₁₂ -1,2,3,7,8,9-HxBDD	Syringue Standard
1,2,3,4,6,7,8-HpCDD	No Native 1,2,3,4,6,7,8-HpBDD	No Standard 1,2,3,4,6,7,8-HpBDD	
OCDD	<u>OBDD</u>	¹³ C ₁₂ -OBDD	Cleanup standard
2,3,7,8-TeCDF	2,3,7,8-TeBDF	¹³ C ₁₂ -2,3,7,8-TeBDF	Cleanup standard
2,3,4,7,8-PeCDF	2,3,4,7,8-PeBDF	¹³ C ₁₂ -2,3,4,7,8-PeBDF	Cleanup standard
1,2,3,7,8-PeCDF	<u>1,2,3,7,8-PeBDF</u>	¹³ C ₁₂ -1,2,3,7,8-PeBDF	Syringue Standard
1,2,3,4,7,8-HxCDF	<u>1,2,3,4,7,8-HxBDF</u>	¹³ C ₁₂ -1,2,3,4,7,8-HxBDF	Cleanup standard
1,2,3,6,7,8-HxCDF	No Native 1,2,3,6,7,8-HxBDF	No Standard 1,2,3,6,7,8-HxBDF	
1,2,3,7,8,9-HxCDF	No Native 1,2,3,7,8,9-HxBDF	No Standard 1,2,3,7,8,9-HxBDF	
2,3,4,6,7,8-HxCDF	No Native 2,3,4,6,7,8-HxBDF	No Standard 2,3,4,6,7,8-HxBDF	
1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-HpBDF	¹³ C ₁₂ -1,2,3,4,6,7,8-HpBDF	Cleanup standard
1,2,3,4,7,8,9-HpCDF	No Native 1,2,3,4,7,8,9-HpBDF	No Standard 1,2,3,4,7,8,9-HxBDF	
OCDF	<u>OBDF</u>	¹³ C ₁₂ -OBDF	Cleanup standard
Chlorinated congener not analysed	<u>2,4,6,8-TeBDF</u>	<u>13C₁₂-2,4,6,8-TeBDF</u>	Sampling Standard

 Table 1 : Comparison between existing chlorinated native and brominated native standards ; composition of the mixture used for optimization of GC-MS method (bold)

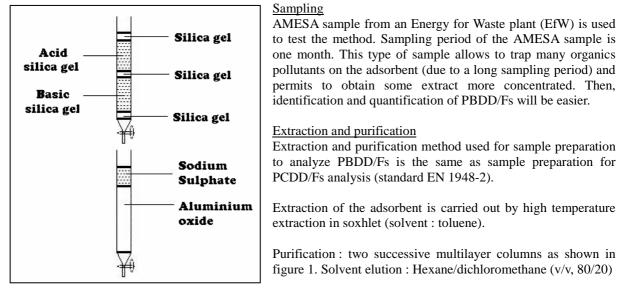


Figure 1 : Sample purification

Analytical conditions

The analyser used for PBDD/Fs identification and quantification is a Gas Chromatograph (Agilent technologies) coupled with a High Resolution Mass Spectrometer (Autospec, Micromass).

Analytical conditions (GC) for PBDD/F identification were determined and optimized through injection of CS6 solution. Characteristics of the capillary column are : DB5 MS, length 60m, internal diameter 0.25mm, thick film 0.25μ m. Table 2 represents the oven temperature programme :

Rate	Hold	Run time
0 °C/min	1 min	1 min
20 °C/min	0 min	3 min
5 °C/min	10 min	31 min
10 °C/min	5 min	37 min
5 °C/min	6 min	49 min
10 °C/min	10 min	60 min
	0 °C/min 20 °C/min 5 °C/min 10 °C/min 5 °C/min	0 °C/min 1 min 20 °C/min 0 min 5 °C/min 10 min 10 °C/min 5 min 5 °C/min 6 min

Table 2 : GC Oven Temperature Programme

Mass detection is based on the two most abundant ions for each molecule :

	TeE	BDD	PeB	BDD	HxH	BDD	HpB	BDD	OB	DD
Abundance (%)	100	67,8	100	98,5	76,3	100	100	98,4	81,4	100
¹² C	497,6923	499,6903	577,6008	579,5988	655,5113	657,5093	735,4198	737,4178	813,3302	815,3282
¹³ C	509,7326	511,7306	589,6411	591,6391	667,5515	669,5495	747,46	749,458	825,3705	827,3685

Table 3 : Monitoring of PBDDs ions mass for MS method

	TeE	BDD	PeB	DD	HxB	BDD	HpH	BDD	OB	DD
Abundance (%)	100	67,8	100	98,5	76,3	100	100	98,4	81,4	100
¹² C	497,6923	499,6903	577,6008	579,5988	655,5113	657,5093	735,4198	737,4178	813,3302	815,3282
¹³ C	509,7326	511,7306	589,6411	591,6391	667,5515	669,5495	747,46	749,458	825,3705	827,3685

Table 4 : Monitoring of PBDDs ions mass for MS method

Results and Discussion

After analytical conditions optimization, the injection of standard mixture allowed to identify and determine retention time of each molecule.

Standard (native and labeled)	Sample (native and labeled)	Ion (m/z)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	483.6954 (native) 495.7357 (labeled)
1,2,3,7,8-PeBDF 2,3,4,7,8-PeBDF 33.87 35.26 33.50 34.00 34.50 35.00 35.50 1,2,3,7,8-PeBDF 2,3,4,7,8-PeBDF 2,3,4,7,8-PeBDF	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	561.6059 (native)
33.87 35.26 33.50 34.00 34.50 35.00 35.50	.50 31.00 31.50 32.00 32.50 33	573.6462 (labeled)
1,2,3,4,7,8-HxBDF 44.83 44.00 45.00 1,2,3,4,7,8-HxBDF 44.00 45.00 44.81 44.00 45.00 44.00 45.00	1,2,3,4,7,8-HxBDF 38.41 38.41 38.50 39.00 1,2,3,4,7,8-HxBDF 38.43 38.43 38.50 39.00	641.5144 (native) 653.5546 (labeled)
1.2,3,4,6,7,8-HpBDF 54.50 54.50 55.00 1,2,3,4,6,7,8-HpBDF 54.86 54.50 54.50 55.00 55.50 1,2,3,4,6,7,8-HpBDF 54.86 54.50 55.00 55.50	1.2.3.4.6.7.8-HpBDF 50.96 50.50 51.00 51.00 51.00 51.01 51.00 51.01 51.00 51.01 51.00 51.01 51.00 51.01 51.00 51.01 51.00 51	719.4248 (native) 731.4651 (labeled)
OBDF not detected	OBDF not detected	

Table 5 : PBDFs in Standard and AMESA sample

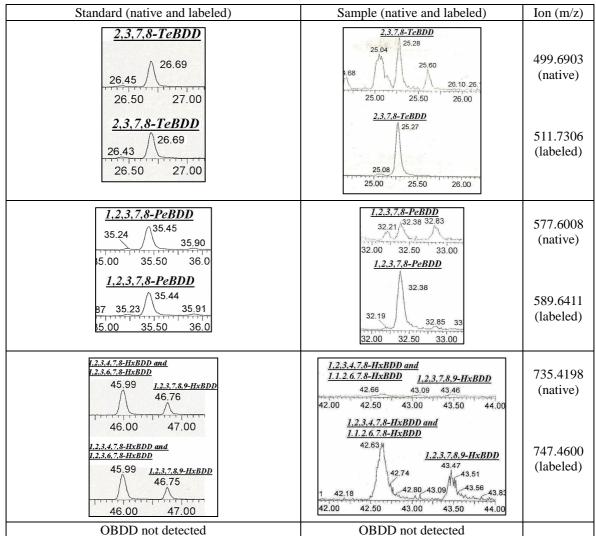


Table 6 : PBDDs in Standard and AMESA sample

It can be noted that OBDD and OBDF are not detected. Indeed, theses molecules do not appear on the chromatogram. Theses molecules are very heavy and the column very long. It is possible that for heavy molecules retention on the column is too strong and, so, very long time is necessary to elute the molecules. Tables 5 and 6 represent chromatogram of standards and flue gas sample.

Preparation and analyse of the flue gas sample confirm that PBDDs and PBDFs are present in flue gas of Energy for Waste plant. The presented method does not allow to detect the 17 targeted compounds, but it is forecasted to change the column to improve the detection of OBDD and OBDF. Then the next step of the study will be to determine the level of concentration of the PBDD/Fs in AMESA samples, and punctual sampling (sampling according to the standard EN 1948-1).

Acknowledgements

We acknowledge the support of the Agency for Environment and Energy Management for their financial support of this project.