RETENTION TIMES AND COELUTIONS FOR ALL 136 TETRA- THROUGH OCTA- CHLORINATED DIOXINS AND FURANS ON A UNIQUE, LOW-BLEED, THERMALLY-STABLE GAS CHROMATOGRAPHY COLUMN

Cochran J^1 , Dorman F^1 , Stidsen G^1 , Reese S^1 , MacPherson K^2 , Kolic T^2 , Reiner E^2 , Ryan J^3 , Bradley J^4 , Craig D^4 , Priest B^4

¹Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania, 16823, USA

²Ontario Ministry of Environment, 125 Resources Road, Toronto, Ontario, M9P 3V6, Canada

³Health Canada, Banting 2203D, Ross Avenue, Ottawa, Ontario, K1A 0L2, Canada

⁴Cambridge Isotope Laboratories, Inc., 50 Frontage Road, Andover, Massachusetts, 01810, USA

Abstract

Historical standards for all 136 tetra- through octa- chlorinated dioxins and furans have been made available and were used to profile a gas chromatography column with unique selectivity.

Introduction

Ryan, Conacher, Panopio, Lau, Hardy, and Masuda¹ used individual standards of all 136 tetra- through octachlorinated dioxins and furans to characterize nine different GC stationary phases in 1991. We use the dioxins and furans from that study to determine retention times and coelutions for all tetra- through octa- chlorinated dioxins and furans under simple linear temperature programming conditions on a gas chromatography column with good selectivity for coplanar dioxins and furans. We note any 2378 congener coelutions.

Materials and Methods

Standards and Samples

Individual standards of all 49 tetra- through octa- chlorinated dibenzo-p-dioxins and all 87 tetra- through octachlorinated dibenzofurans were from Cambridge Isotope Laboratories, Inc. (USA). The full origin details for the materials for these standards are contained in the Ryan paper¹. Eleven mixes of congeners were prepared for analysis. A Sample Fortification Solution (Cambridge Isotope Laboratories, Inc.) containing several ¹³C-labeled chlorinated dioxins (2378, 12378, 123678, 1234678, 12346789) and furans (2378, 12378, 123478, 1234678) was added to each of the mixes prior to analysis to monitor any retention time drift and to use for relative retention time calculations.

GC-HRMS

The 40m x 0.18mm x 0.18µm Rtx-Dioxin2 GC column (Restek Corporation, USA) was installed in an Agilent 6890 GC (USA) connected to a Waters AutoSpec Ultima HRMS (UK). The mass spectrometer was operated at over 10,000 resolving power using electron ionization (40 eV) under selected ion recording conditions. The source temperature was at 280°C. One microliter splitless injections were performed at 280°C. The GC oven was held at 120°C for 1 min, programmed at 10°C/min to 160°C, and then programmed at 4°C/min to 320°C where it was held for 4 min. Helium carrier flow was constant at 1 mL/min.

Results and Discussion

The retention time and coelution results for all tetra- through octa- chlorinated dioxins and furans on the Rtx-Dioxin2 column are shown in **Tables 1 and 2**. While a difference in retention times of at least 3 sec was used to describe a separation, it is important to note that peaks would not be baseline separated using this criterion. Extreme concentration differentials in closely eluting congeners could also invalidate the choice of the 3 sec criterion. However, baseline separation of 2378 TCDD and 2378 TCDF from other closely eluting congeners is not a requirement for columns listed to be specific for TCDD and TCDF in EPA Methods^{2,3}. The separation for TCDD and TCDF congeners in a fly ash sample under the GC conditions listed here are shown in another contribution for Dioxin 2007⁴.

Even with the coelutions, the Rtx-Dioxin2 can be considered a valuable column for dioxin and furan analysis, especially because of its specificity for 2378 TCDD and 2378 TCDF.

References

- 1. Ryan J, Conacher H, Panopio L, Lau B, Hardy B, Masuda Y. J Chromatogr 1991; 541:131.
- 2. United States Environmental Protection Agency. "Method 1613 Tetra- through Octa- Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS", October 1994.
- 3. United States Environmental Protection Agency. "Method 8290A Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)", January 1998.
- 4. Cochran J, Dorman F, Stidsen G, Reese S, MacPherson K, Kolic T, Reiner E, Ryan J, Bradley J, Craig D, Priest B, Dioxin 2007, Tokyo, Japan, September 2-7, 2007.

Table 1. Retention times (RT) and relative retention times (RRT) for all tetra- through octa- chlorinated dioxins (D) on an Rtx-Dioxin2 GC column using linear oven temperature programming. The RRTs were calculated versus 12378 ¹³C-labeled dioxin. Boxes indicate coeluting congeners and the congeners highlighted in red are 2378 chlorine substituted.

Congener	RT (min)	RRT (min)		Congener	RT (min)	RRT (min)
1368 D	29.43	0.8198		12468 D	33.75	0.9401
1379 D	29.64	0.8256		12479 D	33.80	0.9415
1369 D	29.84	0.8312		12469 D	34.17	0.9515
1469 D	30.25	0.8424]	12368 D	34.67	0.9657
1246 D	30.38	0.8462		12478 D	34.83	0.9702
1249 D	30.42	0.8474]	12379 D	34.92	0.9727
1247 D	30.43	0.8476		12467 D	35.02	0.9755
1248 D	30.44	0.8479		12369 D	35.08	0.9769
1378 D	30.64	0.8535		12489 D	35.08	0.9772
1268 D	30.68	0.8546		12346 D	35.36	0.9850
1478 D	30.88	0.8599		12347 D	35.40	0.9858
1279 D	30.95	0.8621		12367 D	35.89	0.9997
1269 D	31.12	0.8669		12378 D	35.91	1.0003
1234 D	31.15	0.8677		12389 D	36.21	1.0086
1236 D	31.25	0.8705				
1237 D	31.47	0.8766		124679 D	37.89	1.0554
1238 D	31.50	0.8774	ĺ	124689 D	37.89	1.0554
1239 D	31.51	0.8777		123468 D	38.53	1.0730
2378 D	31.79	0.8855		123679 D	38.79	1.0805
1278 D	31.90	0.8883		123689 D	38.82	1.0813
1267 D	31.90	0.8886		123469 D	38.90	1.0833
1289 D	32.27	0.8989		123478 D	39.55	1.1017
		•		123678 D	39.66	1.1047
				123467 D	39.78	1.1081
				123789 D	39.98	1.1136
				1234679 D	42.44	1.1822
				1234678 D	43.34	1.2072
				12346789 D	46.93	1.3069

Table 2. Retention times (RT) and relative retention times (RRT) for all tetra- through octa- chlorinated
furans (F) on an Rtx-Dioxin2 GC column using linear oven temperature programming. The RRTs were
calculated versus 12378 ¹³ C-labeled furan. Boxes indicate coeluting congeners and the congeners
highlighted in red are 2378 chlorine substituted.

Congener	RT (min)	RRT (min)		Congener	RT (min)	RRT (min)
1368 F	28.29	0.8181		13468 F	32.38	0.9364
1468 F	28.52	0.8243		12468 F	32.44	0.9378
2468 F	29.03	0.8393		13678 F	33.53	0.9694
1346 F	29.03	0.8393		13467 F	33.58	0.9705
1246 F	29.11	0.8413		12467 F	33.61	0.9717
1378 F	29.15	0.8427		14678 F	33.70	0.9717
1347 F	29.19	0.8441		13478 F	33.69	0.9743
1247 F	29.26	0.8459		12368 F	33.71	0.9746
1348 F	29.27	0.8459		12478 F	33.76	0.9760
1248 F	29.35	0.8485	Ī	13479 F	33.85	0.9783
1379 F	29.40	0.8497		13469 F	34.00	0.9829
1367 F	29.42	0.8503		12479 F	34.09	0.9858
1268 F	29.56	0.8546		12346 F	34.14	0.9870
1467 F	29.64	0.8569		12469 F	34.25	0.9902
1478 F	29.76	0.8604	l l	23468 F	34.35	0.9928
1369 F	29.97	0.8664		12347 F	34.36	0.9931
1237 F	30.03	0.8684		12348 F	34.39	0.9945
1678 F	30.10	0.8702		12378 F	34.61	1.0006
2467 F	30.14	0.8714		12678 F	34.85	1.0075
1234 F	30.16	0.8719		12367 F	34.86	1.0075
1238 F	30.18	0.8725		12379 F	34.99	1.0116
1469 F	30.19	0.8725		12679 F	35.27	1.0197
1236 F	30.27	0.8754		23467 F	35.48	1.0257
2368 F	30.35	0.8772		12369 F	35.51	1.0266
1278 F	30.45	0.8803		12489 F	35.56	1.0277
1349 F	30.48	0.8812		23478 F	35.68	1.0318
1267 F	30.66	0.8864		12349 F	35.74	1.0335
1249 F	30.78	0.8864		12389 F	36.47	1.0544
2346 F	30.83	0.8910				
1279 F	30.89	0.8930				
2347 F	31.03	0.8968				
2348 F	31.10	0.8991				
2378 F	31.22	0.9028				
3467 F	31.33	0.9058				
2367 F	31.41	0.9081				
1269 F	31.44	0.9089				
1239 F	31.61	0.9141				
1289 F	32.43	0.9376				

Table 2 (continued). Retention times (RT) and relative retention times (RRT) for all tetra- through octachlorinated furans (F) on an Rtx-Dioxin2 GC column using linear oven temperature programming. The RRTs were calculated versus 12378 ¹³C-labeled furan. Boxes indicate coeluting congeners and the congeners highlighted in red are 2378 chlorine substituted.

Congener	RT (min)	RRT (min)	Congener	RT (min)	RRT (min)
123468 F	37.23	1.0766	1234678 F	41.99	1.2143
134678 F	37.38	1.0807	1234679 F	42.36	1.2243
124678 F	37.40	1.0812	1234689 F	42.60	1.2319
134679 F	37.62	1.0873	1234789 F	43.92	1.2697
124679 F	37.83	1.0876			
124689 F	38.08	1.1009	12346789 F	47.07	1.3604
123467 F	38.45	1.1116			
123478 F	38.58	1.1154			
123678 F	38.70	1.1191			
123479 F	38.86	1.1234			
123469 F	38.96	1.1263			
123679 F	39.14	1.1315			
123689 F	39.40	1.1387			
234678 F	39.42	1.1400			
123489 F	40.29	1.1651			
123789 F	40.31	1.1654			