RELATIONSHIP BETWEEN Co-PCBs AND PCDDs/Fs IN THE ATMOSPHERE

Jong Won Heo, Dong Gi Kim, Yoon Ki Min, Il Seok Song, Si Rim Choi, Hee Cheon Moon, Ik Beom Park, Yong Chul Park, Jong Chan Kim
Gyeonggi-do Institute of Health \& Environment 324-1 Pajang-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-290, Republic of Korea

Abstract

PCDDs/Fs and Co-PCBs is measured bimonthly at the six site in 2003~2006 year. From relationship between Co-PCBs and PCDDs/Fs based on data of 2003~2005 year, we proposed the numerical formula. Especially the total PCDDs/Fs concentration (the sum of $2,3,7,8$ substituted congeners) was significantly related to Co-HeptaCB $\left(\mathrm{R}^{2}=0.73\right)$. We also compared observed total PCDDs/Fs data in 2006 year with total PCDDs/Fs data calculated by formula which was based on the relationship between Co-heptaCB and total PCDDs/Fs in 2003~2005 year. When Co-heptaCB concentration is below $0.4 \mathrm{pg} / \mathrm{m}^{3}$, the observed total PCDDs $/ \mathrm{Fs}$ data was positively correlated with predicted data.

\section*{Introduction}

It's known that Co-PCBs and PCDDs/Fs are formed during incineration of municipal waste. The behavior of PCDDs/Fs in the atmosphere might resemble Co-PCBs in the atmosphere ${ }^{11}$. However there has been little information on the atmospheric correlation between Co-PCBs and PCDDs/Fs, because previous studies focused on characterization of dioxin and Co-PCBs level and their distribution in the ambient ${ }^{2 / 3)}$. Also most of studies have researched relationship between dioxin and co-PCBs with data of a short period of time. ${ }^{1)}$ The data of this paper consist of $\mathrm{PCDDs} / \mathrm{Fs}(17$ congeners) and dioxin like $\operatorname{PCBs}(12$ congeners) at six location in Gyeonggi-province during four years(total samples: 91). We studied the relationship Co-PCBs and PCDDs/Fs in the atmosphere and proposed the numerical formula predicating the PCDDs/Fs concentration with Co-heptaCB.

Materials and Methods

Sampling Sites and air pollutants

Total Six sites (Suwon, Anyang, Ansan, Seongnam, Bucheon and Siheung) were selected in Gyeonggi-province. Air samples were taken for long time (3~4days) to avoid short-term fluctuations. The following Table 1 shows information of the sampling location.

Table 1. Information of Sampling sites

Sampling Site	Population (person)	Surrounding
Suwon	$1,054,619$	Residential
Anyang	629,426	Down town, residential
Ansan	697,239	Industrial
Seongnam	992,758	Residential
Bucheon	863,397	Residential, industrial
Siheung	397,983	Residential, industrial

Sampling

Sampling was performed in 2003-2006 bimonthly. Ambient air was collected with a high volume air sampler (HV-1000F \& HV-700F, SIBATA, Japan). The sampler was equipped a Quartz filter connected by two polyurethane foam(PUF) plugs. Quartz filter and PUF were pre-cleaned by baking at $800^{\circ} \mathrm{C}$ for 4 hrs , extracted by a soxhlet with toluene over 24 hrs , respectively. All samples were collected with a suction flow of $400 \mathrm{~L} / \mathrm{hr}$ for 96 hrs , resulting in a sample volume of approximately $2,300 \mathrm{~m}^{3}$. Prior to sampling, $\left[{ }^{37} \mathrm{Cl}_{4}\right] 2,3,7,8-\mathrm{T}_{4} \mathrm{CDD}$ standard(ED-2522, CIL, USA) was spiked on PUF in order to estimate a sampling performance and extraction efficiency.

Pretreatment

PCDD/Fs(17congeners) : After sampling, Quartz filter and PUF were extracted with toluene using soxhlet
apparatus over $48 \mathrm{hrs} .{ }^{13} \mathrm{C}_{12}$-labelled standards(EDF-8999, CIL, USA) were spiked before clean-up process. The sample clean-up was performed with disposal silica gel - aluminum oxide columns(FMS, USA) according to HPLC clean-up method ${ }^{2)}$. Finally, the purified extracts were concentrated to approximately $50 \mu \ell$ and spiked internal standard(EDF-5999, CIL, USA) prior to analysis.
Co-PCBs(12 congeners) : The extracts identical to PCDD/Fs analysis were used and pretreatment was performed according to US EPA Method 1668A.

Analysis

The 2,3,7,8-substituted congeners of $\mathrm{PCDDs} / \mathrm{Fs}$ and dioxin like $\mathrm{PCBs}(\mathrm{Co}-\mathrm{PCBs})$ were analyzed by high resolution gas chromatography / high resolution mass spectrometry (Autospec Ultima NT, Micromass Co. UK) using SP-2331 and DB-5MS columns for PCDD/Fs and Co-PCBs, respectively.

Results and Discussion

Fig. 1 Prediction curve and concentration of total PCDDs/Fs versus Co-heptaCB in the atomosphere (2003~2005 data)

We investigated that relationship between congeners of PCDDs, PCDFs and Co-PCBs (Table 2). From correlation analysis (Table 2), the best relationship was found between Co-heptaCB and PentaCDFs.
But, we focused on the prediction of the total PCDDs/Fs concentration with Co-PCBs. From regression analysis between the Co-PCBs congener and total PCDDs/Fs, this analysis showed the total PCDDs/Fs seems to be related to $\mathrm{HpCB}\left(\mathrm{R}^{2}=0.73\right)$.
As you see Fig.1, we proposed the formula which can predict the total $\mathrm{PCDDs} / \mathrm{Fs}$ (the sum of $2,3,7,8$ substituted congeners) with HpCB of data in 2003-2005 year. With the formula of hyperbola ($\left.P C D D s / F s=\frac{55.672 \times C o-\text { hpetaCB }}{1+1.017 \times C o-\text { heptacB }}\right)$, we also compared observed total PCDDs/Fs data in 2006 year with total PCDDs/Fs data calculated(Fig.2).
In Fig 2, the relationship has an $\mathrm{R}^{2}=0.94$ of cross-validation analysis. Therefore, the total PCDDs/Fs concentration was significantly related to Co-heptaCB. This model can predict the total PCDDs/Fs in atmosphere
with only Co-heptaCB concentration.
Particularly when Co-heptaCB concentration is below $0.4 \mathrm{pg} / \mathrm{m}^{3}$, the relationship with Co-heptaCB and PCDDs/Fs showed strongly the linear relation (Fig.3). Also the relationship of modeled and observed data has $\mathrm{R}^{2}=0.956$ in the Fig.3. Therefore, this model could be predicted total PCDDs/Fs concentration of other region having low level Co-heptaCB except for industrial region like Ansan.

Fig. 2 Compare with predicted curve and observed data in 2006 (cross-validation)

Fig. 3 Compare with predicted curve and observed data in 2006 when Co-heptaCB is low level

Table 2 Correlation coefficient between the congener of PCDDs, PCDFs and Co-PCBs.

| | $\mathbf{4 F}$ | $\mathbf{5 F - 1}$ | $\mathbf{5 F}-\mathbf{2}$ | $\mathbf{6 F - 1}$ | $\mathbf{6 F}-\mathbf{2}$ | $\mathbf{6 F}-\mathbf{3}$ | $\mathbf{6 F}-\mathbf{4}$ | $\mathbf{7 F}-1$ | $\mathbf{7 F}-\mathbf{2}$ | $\mathbf{8 F}$ | $\mathbf{4 D}$ | $\mathbf{5 D}$ | $\mathbf{6 D}-1$ | $\mathbf{6 D}-\mathbf{2}$ | $\mathbf{6 D}-3$ | $\mathbf{7 D}$ | $\mathbf{8 D}$ | $\mathbf{5 F}$ | $\mathbf{6 F}$ | $\mathbf{7 F}$ | $\mathbf{6 D}$ | $\mathbf{T o t a l}$ |
| :---: |
| Te-CBs | 0.63 | 0.58 | 0.53 | 0.54 | 0.53 | 0.56 | 0.49 | 0.53 | 0.52 | 0.46 | 0.45 | 0.48 | 0.45 | 0.46 | 0.44 | 0.46 | 0.48 | 0.56 | 0.54 | 0.54 | 0.45 | 0.54 |
| Pe-CBs | 0.50 | 0.46 | 0.43 | 0.41 | 0.41 | 0.47 | 0.39 | 0.41 | 0.42 | 0.27 | 0.44 | 0.40 | 0.36 | 0.39 | 0.38 | 0.36 | 0.33 | 0.44 | 0.41 | 0.42 | 0.38 | 0.39 |
| Hexa-CBs | 0.74 | 0.73 | 0.75 | 0.66 | 0.66 | 0.66 | 0.71 | 0.70 | 0.59 | 0.42 | 0.76 | 0.71 | 0.68 | 0.71 | 0.70 | 0.67 | 0.59 | 0.75 | 0.69 | 0.69 | 0.70 | 0.65 |
| Hepta-CBs | 0.86 | 0.89 | $\mathbf{0 . 9 1}$ | 0.84 | 0.84 | 0.79 | 0.90 | $\mathbf{0 . 8 9}$ | 0.73 | 0.60 | 0.87 | 0.86 | 0.84 | 0.87 | 0.86 | 0.85 | 0.79 | $\mathbf{0 . 9 1}$ | 0.88 | 0.87 | 0.86 | $\mathbf{0 . 8 5}$ |

4F:2,3,7,8-TCDF, 5F-1:1,2,3,7,8-PCDF, 5F-2:2,3,4,7,8-PCDF, 6F-1:1,2,3,4,7,8-HxCDF 6F-2:1,2,3,6,7,8-HxCDF, 6F-3:1,2,3,7,8,9-HxCDF, $6 \mathrm{~F}-4: 2,3,4,6,7,8-\mathrm{HxCDF}$
7F-1: $1,2,3,4,6,7,8-H p C D F, 7 F-2: 1,2,3,4,7,8,9-\mathrm{HpCDF}, 8 \mathrm{~F}:$ OCDF
4D:2,3,7,8- TCDD, 5D: 1,2,3,7,8-PCDD, 6D-1: 1,2,3,4,7,8-HxCDD, 6D-2: 1,2,3,6,7,8-HxCDD, 6D-3: 1,2,3,7,8,9-H6CDD, 7D: 1,2,3,4,6,7,8-H7CDD, 8D:OCDD $5 \mathrm{~F}=5 \mathrm{~F}-1+5 \mathrm{~F}-2,6 \mathrm{~F}=6 \mathrm{~F}-1+6 \mathrm{~F}-2+6 \mathrm{~F}-3+6 \mathrm{~F}-4,7 \mathrm{~F}=7 \mathrm{~F}-1+7 \mathrm{~F}-2,6 \mathrm{D}=6 \mathrm{D}-1+6 \mathrm{D}-2+6 \mathrm{D}-3$

During 2003~2006 year, the order of PCDDs/Fs congeners concentration in atmosphere was $1,2,3,4,6,7,8-\mathrm{HpCDF}>\mathrm{OCDF}>\mathrm{OCDD}$ and the $1,2,3,4,6,7,8-\mathrm{HpCDF}$ was the major contributors to the total PCDDs/Fs concentration ($\mathrm{pg} / \mathrm{m}^{3}$) in the atmosphere with an annual mean contribution of 21.7%. Because Co-heptaCB has the high correlation between all congeners of PCDDs/Fs (Table 1) and moreover have the strong relationship of 1,2,3,4,6,7,8-HpCDF(Fig.4), we estimated that Co-heptaCB could be use the principal parameter the predictable the $\mathrm{PCDDs} / \mathrm{Fs}$ concentration.

Fig. 4 Concentration of $1,2,3,4,6,7,8-\mathrm{HpCDF}$ versus Co-heptaCB in 2003~2006 year

References

1. Kurokawa Y, Matsuede T, Nakamura M, Takada S, Fukamachi K. Chemosphere 1996; 32:491.
2. Rainer L, Nicholas JL, Kevin CJ. Environ Sci Technol 1999;33:4440
3. Joanne W, Jian Z, Alexis K, Peter K. Chemosphere 2005; 59:1387
