APPARENT HALF-LIVES OF DIOXINS, FURANS, AND PCBS IN ADULTS AND CHILDREN

Milbrath M O¹, Wenger Y¹, Gillespie B², Jolliet O¹

¹Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S Observatory, Ann Arbor, MI 48109; ²Department of Biostatistics, University of Michigan School of Public Health, 109 S Observatory, Ann Arbor, MI 48109

Abstract

It is necessary to know the half-life of each congener of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurnans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) in the body to estimate the contribution of past exposures on current serum concentrations. A literature search was conducted for measured and modeled kinetic values for 29 congeners. The mean or median age of each exposed cohort was recorded, and best available data and models were examined to determine a mean half-life for each congener. Sources that provide consistent data for numerous congeners and that are within the range of reported values are used to determine reference half-life values for an infant and for a middle age male. These values can serve as points of departure for determining individual variations of half-life with age and body fat¹ and to adjust past intakes to present values².

Introduction

A central goal of the University of Michigan Dioxin Exposure Study (UMDES) is to determine the factors that explain variation in serum congener levels of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). To account for historical intake in current serum concentration levels of persistent congeners, it is necessary to decay past concentrations over time as a function of their half-lives. Different dioxin, furan, and dioxin-like PCB congeners have different persistence in the human body. This study examines the half-life data for 29 congeners from the literature. Based on the available information, a value for each congener is defined that approximates the half-life for an infant and for a hypothetical adult male nonsmoker with a normal body weight for an exposure to dioxins, furans, and dioxin-like PCBs, at a range relevant to the UMDES cohort (below 700 ppt TEQ). These values can be used as reference half-lives, and can be further adjusted for individual variation with known modifiers such as age, sex, percent body fat, and smoking status¹.

Materials and Methods

An extensive literature search was conducted for studies with half-life or decay values for dioxins and furans (table 1) and dioxin-like PCBs (table 2) in humans. When information on age was not directly available, a mean age during the time of sampling was estimated. Secondly, a subset of data representative of a middle aged adult was selected (white cells in tables) based on the following criteria: a) the blood serum concentration at the time of sampling was below <700 ppt, b) the subjects were adults, and c) the measurements were not later refined or reported as inaccurate in later studies. Half-life values that were measured in assumed steady state conditions were only retained if they were less than 10 years, because of large historical changes in intake levels. Values for children were also excluded, as the effect of dilution due to rapid growth in the first years results in a much shorter apparent half-life³. The mean half-lives were calculated for the retained subset to define a typical level for a moderately exposed adult. In the final part, reference values for a male adult and for an infant were selected based on the best available data. Sources that provided consistent data across congeners within the range of all measured data were chosen. Values reported by Hon-Wing et al. for breastfed infants were used as a point of departure at young ages²⁵.

Results and Discussion

The results of the literature search for dioxins and furans are presented in table 1. There is large variation in half-life values between congeners. For example, the mean half-lives for octa-chlorinated dibenzofuran (OCDF), tetra-chlorinated dibenzofuran (TCDF), and 1,2,3,7,8-pentachlorinated dibenzofuran are less than three years, whereas the mean half-lives for some of the hexa-chlorinated dibenzodioxins are over a decade.

Study	2378 TCDI	12378 PeCDI	123478 HxCDI	123678 HxCDI	123789 HxCDI	1234678 HpCDI	OCDI	2378 TCD	12378 PeCD	23478 PeCD	123478 HxCD	123678 HxCD	123789 HxCD	234678 HxCD	1234678 HpCD	1234789 HpCD	OCD	N	4.00	Concentration Pongo	Cabort	
Flosch Janys1006 ⁴	172	<u> </u>				37	67	<u>–</u>	T	-	E	<u></u>	E	<u></u>	<u> </u>	<u> </u>		11	Age	Kange	Harbieida Dlent Workers Š madien volue	
Flesch-Janys1990	6.1	11 2	0.4	13.1	5.1	10	67				6.4	72		5.0	31	5.2		45	40.7	15.6.300.2	Herbigide Plant Workers S Degression	
Van der Molen 2000 ⁵	6.3	83	7.8	10	1.6	3.2	4.6	24	30	78	5.6	7.1		31	2.8	52	16		40.7	15.0-500.2	Pagrossion of Flash Janus 1006 (Ogura 2004)	
Van der Molen 2000 [°]	7.8	11	12	12	6.8	8.8	5.7	1.4	2.9	10	77	24		3.6	2.0	10	0.7		40.7		Regression of Liem 1997 (Ogura 2004)	
Liem 1997 ⁶	6.2	8.6	12	13	8.5	6.5	5.6	0.4	0.9	9.9	5.7	62	62	$\frac{3.0}{2.4}$	26	26	0.7		40.7	Regression of Lieni 1997 (Ogura 2004)		
Ogura 2004 blood ⁷	0.2	6.7	1)	42	0.5	5.8	22	0.4	0.7	49	9.9	17	0.2	2.4	4.8	2.0	0.2		42.5		General Japanese Population	
Ogura 2004 blobu	67	6.6		24	92	14	5	0.2	04		37	5.8		21	1.0		21		54.5		General Japanese Population	
Pirkle 1989 ⁸	7.1	0.0		27	7.2	1.4		0.2	0.4		5.7	5.0		2.1	1.4		2.1	36	44.7	16.9-423	Operation Ranch Hand	
Wolfe 1994 ⁹	12																	337	44.7	16.9-422	Operation Ranch Hand	
Michalek 1996 ¹⁰	87																	213	47.1	11 5-422 7	Operation Ranch Hand	
Michalek 1999 ¹¹	7.6																	97	49.6	11.5-422.7	Operation Ranch Hand	
Michalek 2002 ¹²	7.5																	97	49.6	11.5 122.7	Operation Ranch Hand	
Needham 1997 ¹³	8.2																	27	.,	130-3830	Explosion in Seveso	
Michalek 2002 ¹²	6.9																	54			Explosion in Seveso	
Geusau 2002a ¹⁴	1.5																	1	30	144000-35900	Austrian Female TCDD poisoning	
Geusau 2002b ¹⁴	2.9																	1	27	26000-9500	Austrian Female TCDD poisoning	
Poiger 1986 ¹⁵	5.8																	1	42		Male Volunteer - one time	
Schlatter 1991 ¹⁶	9.7																	1	45		Male Volunteer - one time	
Rohde1999 ¹⁷	7.9	13.0	13.9	11.6	7.7	3.5	9.2			13.9	9	6		10	4	7.9	13	6	57	84-505	Former chemical plant employees	
Schecter1990 b. ¹⁸										4.7	2.9	3.5			6.5			1	60		Binghamton, NY Office building fire	
Schecter1990 a. ¹⁸										7.2	4.4	4.3			4.1			1	60		Binghamton, NY Office building fire	
Schecter1990 comb. ¹⁸										4.5	4	4.9			6.8			1	60		Binghamton, NY Office building fire	
Iida 1995 ¹⁹										9.1	8.6							17			Yu-Cheng	
Ryan 1991 ²⁰										5	5										Yu-Cheng	
Kashimoto 1983 ²¹										1.5	1.5							30			Yu-Cheng	
Leung 2005 ²²										1.1	2.3				1.5			22	53		Yu-Cheng/Yusho	
Ryan1989 ²⁰										1.7	2.4				2.4						Yu-Cheng	
Ryan1991 ²³										2.5	2.5				2.5			3			Yusho	
Gorski1984 ²⁴				3.5		3.2	5.7								1.7		1.8		1		Child Exposed from Wood in Home	
HonWing 2006 ²⁵	0.4	0.32		0.39		0.3	0.5			0.27									2	1	Breast Milk Fed Infants	
Mean Value	7.5	9.87	12.6	11.6	6.7	4.7	6.7	1.1	2	5.92	5.1	7.5	6.2	4.5	3.5	5.8	3.2					
Adult Reference Value	7.2	11.2	9.82	13.1	5.1	4.9	6.7	2.1	3.5	7.03	6.4	7.2	6.2	2.7	3.1	4.6	1.4					
Infant Reference Value	0.4	0.32	0.5	0.39	0.3	0.3	0.5	0.1	0.2	0.27	0.4	0.4	0.3	0.2	0.2	0.3	0.1					
Reference Value Source	1	2	2	2	2	2	2	3	3	3	2	2	3	3	2	3	3					

Table 1. Measured and modeled half-lives for dioxins and furans reported in the literature. N is the number of subjects in the study. Concentrations areexpressed as ppt. Values in gray were excluded from this analysis. Underlined values are estimates based on similar chemical structure.Reference value sources: 1) Flesh-Janys reported median 2) Flesh-Janys Regression line 3) Van der Molen et al. model with Flesh-Janys data

The range and mean of reported values is for adults of both sexes with mixed smoking status and a range of percent body fat. The reference values were selected to represent a 48.7 year-old non-smoking male at a moderate level of exposure with a percent body fat of 21.86, the median age and percent body in the cohort studied by Flesh-Janys. The reference value was chosen to allow for adjustments based on known modifiers such as sex, smoking status, and percent body fat. The regression data of Flesch-Janys⁴ was used preferentially because it examines a broad range of chemicals in a consistent way; contains information for percent body fat, sex, and smoking status; and the resulting value is within the range of the other studies. In the case of TCDD, the single median value given in the table of Flesh-Janys was used as the reference value, because it better fit with the reported data. For congeners not reported in the Flesch-Janys study, the model given by Van Der Molen et al. was used,⁵ and a reference value was determined using the median age and percent body fat from Flesh-Janys (48.7, 21.9, respectively).

There is a dearth of information in the literature regarding the kinetics of PCBs. Half-life values reported in the literature are shown in table 2. To determine the point of departure for ten of the twelve PCB congeners, values given by Ogura et al. for blood were used⁷. The value given by Ogura for adipose was used for PCB 77 and PCB 81, because there was no blood data available. These values correspond to the half-lives of the general Japanese population assuming steady state conditions. Because of the large decrease in dioxin, furan, and PCB concentrations in the environment in the last 30 years, the steady state assumption is only appropriate for congeners with very short half-lives, and congeners with longer half-lives could be over estimated.

	РС	РС	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ	РСВ			
Study	B 77	B 81	126	169	105	114	118	123	156	157	167	189	N	Age	cohort
Liem 1997 ⁶	0.1	0.1	2.7	13	2.7	2.7	2.7	2.7	13	13	13	13			Population of Netherlands
Ogura 2004 blood ⁷			1.6	7.3	2.4	10	3.8	7.4	16	18	12	22		42.5	General Japanese Population
Ogura 2004 adipose ⁷	0.07	0.73	2.7	13	2.7	25	4.2	12	38	27	10	41		54.5	General Japanese Population
Ryan1991 ²³					10.4								3		Yusho
Ryan 1993 ²⁶					10.4			1.1		1.62			3		Yusho
Chen 1982 ²⁷						0.58		0.83		100			17		Yu-Cheng
Chen 1982 ²⁷						0.51		0.77		100			17		Yu-Cheng
Ryan 1993 ²⁶					10.4			1.1		1.62			3		Yu-Cheng
Brown1989 ²⁸						3.9		5.8					39	42.5	Occupational Exposure
Buhler1988 ²⁹								0.5					1	50	Male Volunteer
Wolff 1991 ³⁰										4.6				4	
Wolff 1992 ³¹								9.6						45	
HonWing 2006					100								2	1	Breast Milk Fed Infants
Mean Value	0.085	0.42	2.33	11.1	6.5	7.12	3.6	4.18	22.3	9.0075	11.67	25.33			
Adult Reference Value	1.43	0.14	0.74	1.65	7.35	2.45	105	3.85	7.45	165	185	125			
Infant Reference Value	0.004	0.04	0.09	0.46	0.13	0.56	0.2	0.41	0.89	1	0.67	1.222			
Reference Value Source	4	4	5	5	5	5	5	5	5	5	5	5			

Table 2. Measured and modeled half-lives for PCBs reported in the literature. N is the number of subjects in the study. Values in gray were excluded from analysis.

Reference values: 4) Ogura et al. blood (mean age = 49.5) 5) Ogura et al. adipose (mean age = 42.5)

Full understanding of the half-lives of different congeners in the body requires continued study of the kinetics of these compounds in humans, especially for PCBs. The mean values and reference values provided above reflect well the current available data in the literature. These half-life values can be further adjusted to reflect individual characteristics that affect the persistence of the different congeners in the body, and can then be used to determine the effect of past intake on current body concentrations.

Acknowledgements

Financial support for this study comes from the Dow Chemical Company through an unrestricted grant to the University of Michigan. The authors acknowledge Ms. Sharyn Vantine for her continued assistance and Drs. Linda Birnbaum, Ron Hites, Paolo Boffetta and Marie Haring Sweeney for their guidance as members of our Scientific Advisory Board.

References

- 1. Milbrath, M.O., Wenger, Y., Garabrant, D., Franzblau, A., Gillespie, B., Chang C-W., Jolliet, O., *Organohalogen Compounds* 2007.
- 2. Jolliet, O., Wenger, Y., Milbrath, M.O., Towey, T., Adrians, P., Garabrant, D., Franzblau, A., Chang, C-W., Gillespie, B., *Organohalogen Compounds* 2007.
- 3. Clewell, H., Gentry, PR., Covington, TR., Sarangapani, R., Teeguarden, JG., *Toxicological Sciences* 79, 381 2004.
- 4. Flesch-Janys, D., Journal of Toxicology and Environmental Health Part A 47, 363 1996.
- 5. Van Der Molen, G. W.; Kooijman, B. A. L. M.; Wittsiepe, J.; Schrey, P.; Flesch-Janys, D.; Slob, W., *Journal of Exposure Analysis and Environmental Epidemiology* 10, 579 2000.
- 6. Liem, A. K. D., and Theelen, R.M.C., National Institute of Public Health and the Environment, Bilthoven, the Netherlands1997.
- 7. Ogura, I., Organohalogen Compounds 66, 3376 2004.
- 8. Pirkle, J. L. W., W.M.; Patterson, D.G., Jr.; Needham, L.L.; Michalek, J.E.; Miner, J.C.; Peterson, M.R.; Phillips, D.L., *J. Toxicol. Environ. Health* 27, 165 1989.
- 9. Wolfe, W. H.; Michalek, J. E.; Miner, J. C.; Pirkle, J. L.; Caudill, S. P.; Patterson Jr, D. G.; Needham, L. L., *Journal of Toxicology and Environmental Health* 41, 481 1994.
- 10. Michalek, J. E.; Pirkle, J. L.; Caudill, S. P.; Tripathi, R. C.; Patterson Jr, D. G.; Needham, L. L., *Journal of Toxicology and Environmental Health Part A* 47, 209 1996.
- 11. Michalek, J. E.; Tripathi, R. C., *Journal of Toxicology and Environmental Health Part A* 57, 369 1999.
- 12. Michalek, J. E.; Pirkle, J. L.; Needham, L. L.; Patterson Jr, D. G.; Caudill, S. P.; Tripathi, R. C.; Mocarelli, P., *Journal of Exposure Analysis and Environmental Epidemiology* 12, 44 2002.
- Needham, L. L.; Gerthoux, P. M.; Patterson Jr, D. G.; Brambilla, P.; Turner, W. E.; Beretta, C.; Pirkle, J. L.; Colombo, L.; Sampson, E. J.; Tramacere, P. L.; Signorini, S.; Meazza, L.; Carreri, V.; Jackson, R. J.; Mocarelli, P., *Teratogenesis Carcinogenesis and Mutagenesis* 17, 225 1997.
- 14. Geusau, A.; Schmaldienst, S.; Derfler, K.; Papke, O.; Abraham, K., *Archives of Toxicology* 76, 316 2002.
- 15. Poiger, H.; Schlatter, C., *Chemosphere* 15, 1489 1986.
- 16. Schlatter, C., Banbury Report 351991.
- 17. Rohde, S.; Moser, G. A.; Päpke, O.; McLachlan, M. S., Chemosphere 38, 3397 1999.
- 18. Schecter, A.; Ryan, J. J.; Kostyniak, P. J., Chemosphere 20, 911 1990.
- 19. Iida, T.; Hirakawa, H.; Matsueda, T.; Nakagawa, R.; Morita, K.; Hamamura, K.; Nakayama, J.; Hori, Y.; Guo, Y. L.; Chang, F. M., Fukuoka *Acta Medica* 86, 234 1995.
- 20. Ryan, J. J., Masuda, Y., Proceedings of 9th international symposium on chlorinated dioxins and related compounds Dioxin 89, TOX 06 1989.
- 21. Kashimoto T, M. H., Fukushima S, Kunita N, Ohi G, Tung T.C, Fukuoka Acta Medica 74, 255 1983.
- 22. Leung, H. W., Kerger, B., Paustenbach, D.J., Ryan, J.J., Masuda, Y., *Organohalogen Compounds* 67, 1726 2005.
- 23. Ryan, J. J., Masuda, Y., Proceedings of 11th international symposium on chlorinated dioxins and related compounds Dioxin 91, 70 1991.
- 24. Gorski, T.; Konopka, L.; Brodzki, M., Roczniki Panstwowego Zakladu Higieny 35, 297 1984.
- 25. Hon-Wing, L.; Brent, D. K.; Dennis, J. P., *Journal of Toxicology and Environmental Health Part A* V69, 437 2006.
- 26. Ryan, J. J.; Levesque, D.; Panopio, L. G.; Sun, W. F.; Masuda, Y.; Kuroki, H., Archives of Environmental Contamination and Toxicology 24, 504 1993.
- 27. Chen, P. H.; Luo, M. L.; Wong, C. K.; Chen, C. J., Food and Chemical Toxicology 20, 417 1982.
- 28. Brown, J. F., Lawton, R.W., Ross, M.R., Feingold, J., Wagner, R.E., Hamilton, S.B., *Chemosphere* 19, 829 1989.
- 29. Buhler, F.; Schmid, P.; Schlatter, C., Chemosphere 17, 1717 1988.
- 30. Wolff, M. S.; Schecter, A., Archives of Environmental Contamination and Toxicology 20, 449 1991.
- 31. Wolff, M. S.; Fischbein, A.; Selikoff, I. J., Environmental Research 59, 202 1992.