PCB TREATMENT AT JAPAN ENVIRONMENTAL SAFETY CORPORATION -A NATIONAL PROJECT OF JAPAN-

Saito M¹, Umeno N¹, Katagiri Y¹, Ota S¹

¹Japan Environmental Safety Corporation, 1-7-17 Shiba Minato-ku Tokyo, 105-0014 Japan

Abstract

Japan Environmental Safety Corporation (JESCO) is assigned to establish and operate PCB treatment facilities in five locations throughout Japan, under the supervision of the central government. Four facilities are currently under operation, beginning with Kitakyushu Facility which opened in December 2004. All JESCO facilities use chemical decomposition methods to treat transformers, capacitors, PCB oil, and ballasts of assigned regions (ballasts are accepted only at Tokyo Facility at the present). JESCO has decomposed a sum total of 294.9 tons of PCB by the fiscal year 2006. Unfortunately, JESCO experienced accidents at Toyota Facility and Tokyo Facility, which resulted in a deep plunge of decomposition amount compared to facility capacities.

It is the task for JESCO to realize stable operation of facilities under operation. Facilities currently under operation or construction are substantially first facilities on practical application of each respective technology. Each facility has to accumulate experience on its operation and management toward completion of treatment within the given period.

Furthermore, JESCO plans to treat PCB contaminated wastes in Kitakyushu project (phase II)(under design) and Hokkaido project (successive phase)(under study). It is necessary to develop the facility by utilizing the findings of past experience, and JESCO will address the PCB issue by attaining safe and sure treatment.

Introduction

Japan Environmental Safety Corporation (JESCO) is a special company wholly owned by the central government. It was established in April 2004 under the "Japan Environmental Safety Corporation Law (Law No.44 of 2003)", to conduct the PCB waste treatment program as principal business activity, succeeded from former "Japan Environment Corporation (JEC)".

JESCO is to establish PCB treatment facilities at five locations nationwide, under the supervision of the central government and under the supervision and direction of the local government at each location, and treat all PCB wastes (besides in-house disposal) stored throughout Japan, by the year 2016, which is the deadline for the disposal of PCB waste, set forth by the "Law concerning Special Measures for Promotion of Proper Treatment of PCB Wastes"¹.

At the present, JESCO treats PCB wastes at four PCB facilities, beginning with Kitakyushu Facility which started operations in December 2004, followed by Toyota, Tokyo, and Osaka Facilities. (See Figure 1 & Table 1)

This paper gives a brief introduction of JESCO's PCB waste treatment program.

Materials and Methods

<Types of PCB wastes treated >

Types of PCB wastes treated at present JESCO facilities are transformers, capacitors, PCB oil and ballasts (ballasts are accepted only at Tokyo Facility at the present). These PCB wastes are given priority for treatment, because they contain a large amount of PCBs per unit, and are massively stored at urban regions. The total amount of PCB wastes to be treated across Japan add up to approximately 14 thousand high-voltage transformers, 265 thousand high-voltage capacitors, 51 thousand other electric equipments, 2 million ballasts (figure includes only ballasts stored at areas assigned to Tokyo Facility) and 1,700 tons of PCB oil.

<Treatment Method>

An outline of treatment methods used at JESCO facilities are shown at Table 2.

All JESCO facilities use only chemical decomposition methods, because they do not produce combustion gases. Tokyo Facility adopts the "hydrothermal oxidation decomposition method", and the other four facilities adopt the "dechlorination method".

In accordance with the company policy to carry out PCB waste treatment with priority on safe and reliable treatment and information disclosure, JESCO designs its facilities conforming to the concepts of adopting safe and sure treatment methods, taking multiple safety measures based on the idea of risk management, and disclosing information on treatment status.

When determining treatment method for each facility, experts at the JESCO PCB Waste Treatment Project Exploratory Committee discuss necessary requirements for the facility, considering terms such as types of PCB wastes to treat and geographical constraints. In accordance with the conclusion of Committee discussions, JESCO invites public proposals on concrete treatment methods under WTO rules, and carefully examines proposals from technical aspects and implementation aspects, and finally makes decision on which method to adopt.

Results

The amount of PCB wastes treated at currently operating facilities at JESCO is shown in Table 3. By the fiscal year 2006, JESCO has decomposed 294.9 tons of PCB.

Kitakyushu Facility has treated amounts commensurate with its treatment capacity. Toyota Facility and Tokyo Facility experienced accidents in November 2005 (Toyota), and March / May 2006 (Tokyo), causing small amounts of PCBs to leak, bringing both facilities to halt operations for a long period. Thus the amount of PCB wastes treated at both facilities is far below treatment capacities. Considering these accidents, initial input of PCB wastes for treatment was reduced at Osaka Facility. Confirming the safety, JESCO is gradually increasing input at Osaka.

Discussion

It is the task for JESCO to realize stable operation of facilities under operation. Facilities currently under operation or construction are substantially first facilities on practical application of each respective technology. Each facility has to accumulate experience on its operation and management toward completion of treatment within the given period.

Furthermore, JESCO plans to treat PCB contaminated wastes in Kitakyushu project (phase II)(under design) and Hokkaido project (successive phase)(under study). It is necessary to develop the facility by utilizing the findings of past experience, and JESCO will address the PCB issue by attaining safe and sure treatment.

Acknowledgements

The authors thank the Ministry of the Environment, local governments, neighbor residents of JESCO facilities, Professor Nagata and other members of the JESCO PCB Waste Treatment Project Exploratory Committee, and everyone for making JESCO PCB treatment projects possible.

References

1. Outline of the "Law concerning Special Measures for Promotion of Proper Treatment of PCB Wastes": http://www.jesconet.co.jp/eg/pcblaw.htm (JESCO's Website)

Figure 1 Location of JESCO facilities and assigned prefectures

Table 1	Outline of JESCO	O facilities
---------	------------------	--------------

Facility	Location	Prefectures assigned	Types of PCB	Main Equipment	Capacity	Start of
			wastes treated		(PCB oil)	Operation
Kitakyushu	Kitakyushu	17 prefectures in	Transformers,	Reaction Tank:2,	0.5 tons/day	December
(Phase 1)	City,	Chugoku, Shikoku,	capacitors, and	Aftertreatment Tank :		2004
	Fukuoka	Kyushu, and Okinawa	PCB oil	2, Solid-liquid		
		Regions		separator:1, VTR:1,		
				etc.		
Toyota	Toyota City,	4 prefectures in Tokai	Transformers,	Reaction Tank:2,	1.6 tons/day	September
	Aichi	Region	capacitors, and	Reaction Tank for		2005
			PCB oil	Washing Liquid :2,		
				VTR :4, etc.		
Tokyo	Koto-ku,	4 prefectures in South	Transformers,	Decomposition	2.0 tons/day	November
	Tokyo	Kanto Region	capacitors, PCB oil	Reaction Equipment :		2005
	-	_	and ballasts	3, etc.		
Osaka	Osaka City,	6 prefectures in Kinki	Transformers,	Intermediate	2.0 tons/day	October 2006
	Osaka	Regions	capacitors, and	Treatment Line:1,	-	
		_	PCB oil	Decomposition Line :		
				1, Recovery Line:2,		
				VTR:4, etc.		
Hokkaido	Muroran	16 prefectures in	Transformers,	Reaction Tank:2,	1.8 tons/day	April 2008
	City,	Hokkaido, Tohoku,	capacitors, and	Aftertreatment	-	(Scheduled)
	Hokkaido	North Kanto,	PCB oil	Separation Line:2,		
		Koushinetsu, and		VTR:4		
		Hokuriku Regions				

 Table 2
 Treatment methods adopted at each facility (Translated name of Japanese technology is informal)

	Pre-treatment	PCB Decomposition					
		Reaction Condition					
Facility	Name of Technology	Name of Technology	Tempera	Pressure	Reaction	Solvent,	
	<company owns<="" td="" that=""><td><company owns<="" td="" that=""><td>-ture</td><td>(MPa)</td><td>time (hrs.)</td><td>etc.</td></company></td></company>	<company owns<="" td="" that=""><td>-ture</td><td>(MPa)</td><td>time (hrs.)</td><td>etc.</td></company>	-ture	(MPa)	time (hrs.)	etc.	
	technology>	technology>	(degrees				
			Celsius)				
Kitakyushu	Precise Recovery Cleansing	Sodium Dispersion Method (SD	160 to	Ordinary	1	Insulation	
(Phase 1)	Method <mitsui &<="" engineering="" td=""><td>Method) *3</td><td>170</td><td>Pressure</td><td>(after</td><td>Oil</td></mitsui>	Method) *3	170	Pressure	(after	Oil	
	Shipbuilding Co., Ltd.>	<nippon co.,="" ltd.="" soda=""></nippon>			dripping		
	Vacuum Thermal Recycling				activating		
	Method (VTR Method)				agent)		

	<z.e.r.o. co.,="" japan="" ltd.=""></z.e.r.o.>					
Toyota	Solvent Extraction Decomposition Method (SED Method) *1 <kobelco Eco-Solutions Co., Ltd.></kobelco 	Ontario Hydro Technologies Sodium Dispersion Method (OSD Method) *3 <nuclear fuel="" industries,="" ltd.=""></nuclear>	60 to 70	Ordinary Pressure	6	Liquid Paraffin
Tokyo	MHI Chemical Cleansing Method *1 <mitsubishi heavy<br="">Industries, Ltd.></mitsubishi>	Hydrothermal Decomposition Method *2 <mitsubishi heavy<br="">Industries, Ltd.></mitsubishi>	About 370 to 380	About 26.5	About 3.5	Auxiliary Agent: NaOH
Osaka	Solvent Cleansing Method <toshiba corporation=""> Vacuum Thermal Recycling Method (VTR Method) < Z.E.R.O. Japan Co., Ltd.></toshiba>	Catalyst Hydrogenation Dechlorination Method (Pd/C Method) *3 <kanden co.,="" engineering="" ltd.=""></kanden>	About 260	Ordinary Pressure	6	Liquid Paraffin
Hokkai- do	Solvent Extraction Decomposition Method (SED Method) *1 <kobelco Eco-Solutions Co., Ltd.></kobelco 	Sodium Dispersion Method (SP Hybrid Method) *3 <kobelco Eco-Solutions Co., Ltd.></kobelco 	115 to 120	Ordinary Pressure	3	Liquid Paraffin, Accelerant: IPA

*1 Includes Vacuum Thermal Recycling *2 Classified as "Hydrothermal Oxidation Decomposition Method" under the Waste Management and Public Cleansing Law (Law No.137 of 1970)

*3 Classified as "Dechlorination Method" under the Waste Management and Public Cleansing Law (Law No.137 of 1970)

Table 3	Amount of PCB	waste treated at	JESCO	facilities

	Fiscal Treated PCB		Waste(units)	PCB	
Facility	Vear	Transformers	Capacitors	Decomposition	Remarks
	Tear		-	Amount (tons)	
Kitakyushu	2004	30	62	6.2	Capacity (PCB oil): 0.5t/day
(Phase 1)	2005	238	755	55.8	Capacity (Pre-treatment):
	2006	241	1,038	67.7	Transformers: 1/day,
	Total	509	1,855	129.7	Capacitors: 4/day
			,		Start of Operation: Dec. 2004
Toyota	2005	35	597	26.8	Capacity (PCB oil): 1.6t/day
	2006	77	1,605	63.7	Capacity (Pre-treatment):
	Total	112	2,202	90.5	Transformers: 3.5/day
					Capacitors: 24/day
					Start of Operation: Sep. 2005
					(Shutdown: Nov. 2005 to Jul. 2006)
Tokyo	2005	95	362	28.8	Capacity (PCB oil):2.0t/day
	2006	0	46	26.0	Capacity (Pre-treatment):
	Total	95	408	54.8	Transformers: 1.5/day
					Capacitors: 25/day
					Start of Operation: Nov. 2005
					(Shutdown: Mar. to Oct. 2006)
Osaka	2006	56	1,571	19.7	Capacity (PCB oil):2.0t/day
	Total	56	1,571	19.7	Capacity (Pre-treatment):
					Transformers: 2/day
					Capacitors: 35/day
					Start of Operation: Oct. 2006
Grand Total	2004	30	62	6.2	
	2005	368	1,714	111.4	
	2006	374	4,260	177.2	
	Total	772	6,036	294.9	