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Abstract  
Quantitative structure–activity relationship (QSAR) models were developed for the toxicity of polychlorinated 
dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs) and naphthalenes (NAPs), respectively, 
using partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM3 
method were used as predictor variables. Four optimal QSAR models are developed for 25 PCDDs, 35 PCDFs, 
25 PCDDs and 35 PCDFs together, 30 PCBs and 5 NAPs together, respectively. All the cross-validated Q2

cum 

values of the four QSAR models are higher than 0.50, which shows that these models have good predictive 
capabilities for the biological toxicity of these persistent organic pollutants (POPs). The results of this study 
provide a rapid, simple and valid means of predicting the toxicity of POPs from the chemical structure. 
 
Introduction 
Persistent organic pollutants (POPs) such as organochlorine compounds (OCs), polychlorinated 
dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) have been detected in many kinds 
of environmental matrices even in remote areas such as the Arctic1-3. Because of their ubiquitous distribution, 
toxicity, persistence and bioaccumulation potential in the food web, POPs have raised concern about their 
adverse effects such as carcinogenicity, teratogenicity, and mutagenicity on organisms and human4-6. However, 
because of high cost, time-consuming process, limits of detection and lack of adequate standard materials, 
toxicity data of POPs are rather scarce. To solve these problems, quantitative structure-activity relationship 
(QSAR) models, which correlate and predict toxicity data of POPs from their molecular structural descriptors, 
provide valuable approach in research into the toxicity without any experiments7-9. POPs cause adverse 
biological effects after binding to a common intracellular cytosolic protein called the aryl hydrocarbon receptor 
(AhR), so the key point in predicting the toxic effects of POPs is the estimation of their binding to AhR10. In this 
study, quantum chemical descriptors were used to develop reliable QSAR models for the binding affinities (BA) 
of POPs for aryl hydrocarbon receptors (AhRs) using partial least square (PLS) algorithm. 
 
Materials and methods  
The experimental toxicity parameter, BA of POPs for AhRs in vitro rat hepatocyte assays reported, was adopted 
in this study11-13. These toxicity values were collected by Ashek et al.14. In previous reports, we found that 
models computed by PM3 Hamiltonian suggested a better predictive capability for the toxicity of hydroxylated 
and quinoid PCB metabolites than models developed using other semi-empirical methods such as AM1 and 
MNDO15. Therefore, molecular structural descriptors were calculated for PCDDs, PCDFs, PCBs and NAPs by 
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semi-empirical PM3 methods in the present study. All calculations were performed using MOPAC (2000) 
contained in the CS Chem3D Ultra (Version. 6.0). A total of 23 MOPAC-derived descriptors that reflect the 
overall characters of the chemicals were computed using PM3 method in this study. A full list is given in Table 1.  
Table 1   List of molecular structural descriptors of POPs 

Symbols Description 

MW Molecular weight 

ΔHf Standard heat of formation (kcal) 

TE Total energy 

EE Electronic energy 

CCR Core-core repulsion energy 

EHOMO The energy of the highest occupied molecular orbital 

EHOMO-1 The energy of the second highest occupied molecular orbital 

ELUMO The energy of the lowest unoccupied molecular orbital 

ELUMO+1 The energy of the second lowest unoccupied molecular orbital

qCL
+ The largest positive atomic charge on a chlorine atom 

qH
+ The most positive net atomic charges on a hydrogen atom 

qC
- The largest negative atomic charge on a carbon atom 

qO
- The largest negative atomic charge on a oxygen atom 

μ Dipole moment 

μx X-axis dipole moment 

μy Y-axis dipole moment 

μz Z-axis dipole moment 

α Average molecular polarizability 

IP Ionization potential 

The Simca (Simca-S Version 6.0, Umetri 
AB and Erisoft AB) software was used to 
perform the PLS analysis. The criterion 
used to determine the model 
dimensionality is cross validation (CV). 
When the cumulative cross-validated 
regression coefficient (Q2) for the 
extracted components, Q2

cum, is larger than 
0.5, the model is considered to have a 
good predictive ability. Model adequacy 
was mainly characterized by the number 
of observations used for model building in 
the training set, the number of PLS 
principal components (A), Q2

cum, the 
correlation coefficient between observed 
and fitted values (R), the general standard 
error (SE) and the significance level (p)16.  
 
 
 
 

Results and discussion 
In a PLS model, variable importance in the 
projection (VIP) is a parameter in the PLS analysis 
that shows the importance of a variable in a PLS 
model. PLS analysis with log1/EC50 values of 
POPs as dependent variable and the 23 quantum 
chemical descriptors as independent variables 
generate many results. The optimal model, which 
has the largest Q2

cum, largest R and smallest p, was 
obtained through stepwise culling the model with 
the smallest VIP value.  
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developing significant QSAR models depending on 
their parent molecules. Following the procedure 

Figure 1 Plots of observed vs. predicted log1/EC50 
values of PCDDs in model (1) 
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described above, four models were obtained using computed molecular descriptors by semi-empirical PM3 
method for log1/EC50 values of the POPs. For example, models (1) to (4) were developed for 25 PCDDs, 35 
PCDFs, combination of 25 PCDDs and 35 PCDFs, and 30 PCBs and 5 NAPs together, respectively. Based on the 
unscaled pseudo-regression coefficients of the independent variables and constants transformed from PLS results, 
analytical QSAR equations from models (1)~(4) were obtained and shown in Eq. 1 to 4: 
 
Model (1) for PCDDs: 
log1/EC50 = 3.281－6.588×10-1 (ELUMO-EHOMO)2－7.377×10-4 CCR －2.465 EHOMO+ 1.109×10-2 MW－3.648 

( ELUMO+EHOMO ) + 4.370 ELUMO+1                                               (1) 
n=25, A=3, R2

X(adj.) (cum)=0.989, R2
Y(adj.)(cum)=0.853, Eig=0.363, Q2

cum=0.816, R=0.923, SE=0.593  
Model (2) for PCDFs: 
log1/EC50 = －46.961－1.343×10-1(ELUMO - EHOMO)2 － 2.151( ELUMO - EHOMO)－22.439 qC

-+38.800 qH
+－

6.590×10-1μy－7.701 EHOMO－3.38×10-1μx                                                            (2) 
n=35, A=2, R2

X(adj.) (cum)=0.608, R2
Y(adj.)(cum)=0.707, Eig=1.089, Q2

cum=0.629, R=0.841, SE=0.769  
Model (3) for PCDD/Fs: 
log1/EC50 = －27.89－3.269EHOMO-1 + 3.325×10-2α－2.793×10-1μx + 24.622qH

+－7.680×10-2(ELUMO-EHOMO)2                       

(3) 
n=60, A=2, R2

X(adj.) (cum)= 0.549, R2
Y(adj.)(cum)= 0.686, Eig=1.140, Q2

cum=0.603, R=0.829, SE=0.870  
Model (4) for PCBs and NAPs: 
log1/EC50 = －14.721 + 5.545×10-3MW－2.209EHOMO-1－7.872×10-1ELUMO－24.284 qH

+ + 1.632×10-1μy －
4.378×10-3(ELUMO - EHOMO)2

 + 6.324×10-1 qC
-                                                            (4) 

n=35, A=2, R2
X(adj.) (cum)=0.616, R2

Y(adj.)(cum)=0.782, Eig=1.532, Q2
cum=0.734, R=0.884, SE=0.499  

 
Table 2 The VIP values for the molecular structural descriptors included in models (1)~(4) 

Model(1) Model(2) Model(3) Model(4) 
Variables VIP Variables VIP Variables VIP Variables VIP 

(ELUMO-EHOMO)2 1.591 (ELUMO-EHOMO)2 1.349 EHOMO-1 1.338 MW 1.413
CCR 1.020 ELUMO-EHOMO 1.343 α 1.273 EHOMO-1 1.395
EHOMO 0.830 qC

- 0.994 μx 0.753 ELUMO 1.144
MW 0.801 qH

+ 0.987 qH
+ 0.750 qH

+ 0.923
ELUMO+EHOMO 0.756 μy 0.748 (ELUMO-EHOMO)2 0.679 μy 0.637
ELUMO+1 0.726 EHOMO 0.658   (ELUMO-EHOMO)2 0.577
  μx 0.649   qC

- 0.397

 
Models (1)~(4) suggested that molecular structural characteristics affected the toxicity of these chemicals. As all 
the cross-validated Q2

cum values of models (1)~(4) are larger than 0.50, these models are surely stable and have 
good prediction capability. It is also obvious that the Q2

cum values of model (1) and model (2) are larger than the 
Q2

cum values of model (3), the PLS models developed for PCDDs and PCDFs, respectively, are more reliable 
than that for PCDDs and PCDFs together. This may be reasonable since the parent structures of PCDDs, PCDFs, 
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PCBs and NAPs are different from each other. In conclusion, these models provided a reliable way to predict 
the toxicity of POPs from their chemical structures. 
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