CONTAMINATION OF CHICKEN EGGS FROM DIFFERENT RUSSIAN REGIONS BY PCBS AND CHLORINATED PESTICIDES

Shelepchikov AA¹, Revich BA², Feshin DB¹, Brodsky ES¹, Zilnikov VG¹, Sergeev O³, Mihaluk NS⁴

¹ Severtsov Institute of Problems of Ecology and Evolution, Moscow, Russian Academy of Sciences (IPEE RAS), 119071, Leninsky pr. 33, 119071 Moscow, Russia, <u>eco-analit@mail.ru</u>; ² Center for Demography and Human Ecology of Institute for Forecasting, Russian Academy of Sciences, Moscow, 117418, Russia; ³ Samara Medicine University, Samara, Russia; ⁴ Rospotrebnadzor, Novomoskovsk Tula region.

Introduction

Pesticides such as DDT, Lindane, HCB as well as PCBs were produced and wide used in Russia for a long period of time. At the same time works concerning to risk assessment for areas surrounding chemical plants are few. Very often these areas are used for food producing at personal farms of citizens. Food is known to be the main source of these contaminants exposure for humans, accounting for 98% of the total intake¹. IPEN proposed to analyze chicken eggs from personal farms as one of the most versatile and accessible object for investigations. This approach was used for determination of Persistent organic pollutants (POPs) levels in lot of countries in different part of our planet⁴. Our study included determination of dioxin-like and indicator PCBs, DDT/DDE, lindane and HCB levels in chicken eggs from personal farms that are located at areas surrounding PCBs or pesticides producing plants.

Materials and Methods

Eggs were boiled in distillated water directly after sampling and send to the laboratory were stored refrigerated till analysis. After removing of shell, eggs were mixed with anhydrous magnesium sulfate; subsample (~10 g) was spiked with ¹³C₁₂-labeled standard and extracted by 150 ml acetone:hexane (20:80 v:v) at in high-performance solvent extraction system². Extracts was cleared by acid silica and on alumina column, if needed. Each analytical run contained a method blank. All solvents, sorbent and reusable glassware were tested to ensure the absence of contaminants and interference. Both pesticide and PCB's analysis were performed in single injection using GC-HRMS technique (Hewlett Packard HP 6890 Plus, Finnigan MAT 95XP) at resolution 10000.

Results and Discussion

Samples for the given study were obtained from following four locations:

- Novomoskovsk (Tula region), located nearby PCB producing plant "Orgsintez" (closed in 1995);
- Chapaevsk (Samara region), located nearby chlorinated pesticides producing plant;
- Saratov region;
- Poultry farms from different Russian regions: Kostroma, Tyumen, Chelyabinsk, Orenburg and Ulyanovsk.

Results are given in tables 1 and 2. Comparison of total dioxin-like PCBs and DDT/DDE levels between eggs from personal farms and poultry farms is shown at fig. 1 and 2.

It can be seen that POPs levels are quite high in chicken eggs from personal farms which are located nearby PCBs producing plant in Novomoskovsk (tab. 1). TEQ levels of WHO-PCBs were about 100 times higher than those for eggs samples from Chapaevsk food market and 60 times higher than in eggs samples from Saratov region (fig. 1). DDT/DDE levels for Novomoskovsk eggs samples are also rather high.

WHO-PCBs levels in Chapaevsk eggs samples are significantly lower than those in Novomoskovsk and in the same time it appeared to be higher than in Saratov region. DDT/DDE levels are bit higher than in Saratov region, where DDT was widely used. HCB levels in Chapaevsk eggs are higher than those in Saratov region.

Chapaevsk chicken eggs samples may be divided on two groups depending on distance of personal farms from chemical plant: closer and further than 3 km. In table 2 average concentrations of analyzed compounds are given. Gray column of table 2 indicates extremely high POPs levels of one egg sample from personal farm located it 7 km far from chemical plant – Gubashevo district (these data excluded from average mean calculations).

Total PCB TEQ levels as well as HCB levels are correspondingly 3,5 and 3,7 times higher in eggs samples taken nearby chemical plant. Difference in DDT/DDE and lindale levels is minimal.

Data of POPs levels in poultry farms eggs samples from different regions of Russia were at the same with those for personal farms Marxsovsky district of Saratov region. In eggs form others districts of Saratov region PCBs and DDT/DDE levels are higher (tab.1).

It can de seen that all poultry farms eggs demonstrate PCBs levels within latest EU regulations³ and not exceed 6 ng TEQ/g lipid weight. But it must be noted that PCDD/Fs didn't determinate in these samples.

All other samples (except those from Marxovsky and Volsky districts of Saratov region) showed high levels of WHO-PCBs which are significantly exceeding EU regulations.

Comparison the results under discussion to data of IPEN egg study⁴ shows that PCBs levels in Novomoskovsk and Chapaevsk eggs samples from Novomoskovsk personal farms are higher than in eggs from Dzerzhinsk (which is known to be one of the most polluted areas in Russia) and some other countries (Helvan in Egypt, Lyuknov in India, Bolshoi Trostenek in Belorussia, Kovachevo in Bulgaria).

DDT/DDE levels in most of the eggs samples are not exceeded maximum allowed levels for Russia which is set as 0,1 mg/kg wet weight⁵. Noticeable overvaluation of this level was found only in eggs samples from Novomoskovsk personal farms.

HCB and lindane levels in Chapaevsk eggs samples are not exceeded Russian regulations normative but its 1-2 orders higher than concentrations found in egg samples from others regions.

Analysis of egg samples from five poultry farms from different regions of Russia didn't show its significant contamination by pesticides. But in the same time noticeable pollution by PCBs is found.

	Novomoskovs	k, Tula region	Saratov region			
	nearby plant,	2 km from	Marxovsky	Volsky district	Engelsky	
	n=3	plant, n=2	district, N=3	N=3	district, N=4	
PCB-77	1 774	4 506	95,4	70,80	121,1	
PCB-81	673,6	122,1	5,93	6,9	10,03	
PCB-105	389 229	102 004	5 509	2 454	6 461	
PCB-114	18 355	5 384	423,5	163,5	476,1	
PCB-118	820 604	219 410	11 910	5 628	14 467	
PCB-123	15 992	3 551	611,0	233,8	603,4	
PCB-126	899,1	118	17,6	22,2	36,22	
PCB-156	116 579	28 523	1 399	401,2	1 885	
PCB-157	35 338	6 099	326,2	98,23	473,1	
PCB-167	32 263	9 163	642,5	226,3	936,7	
PCB-169	2 549	460,1	25,06	66,90	37,70	
PCB-189	4 913	888,9	32,26	63,50	56,45	
WHO-TEQ (PCB)	324,17	69,58	4,44	3,87	7,40	
PCB-28/31	n.a.	n.a.	2 733	3 362	2 732	
PCB-52	n.a.	n.a.	1 907	1 816	1 906	
HCB	n.a.	n.a.	3 797	4 850	3 797	
o,p'-DDE	5 837	6 651	1 335	747,6	1 335	
p,p'-DDE	2 610 342	2 017 247	164 816	126 078	164 816	
o,p'-DDT	680 79	55 567	2 007	565,9	2 007	
p,p'-DDT	1 647 497	1 226 308	25 386	17 383	25 386	
Σ DDT and DDE	4 331 756	3 305 773	193 544	144 774	193 543	

Table 1. PCBs and pesticides levels in chicken eggs samples from Novomoskovsk and Saratov region

(pg/g lipid weight).

	food market,	Samples form personal farms				
	n=4	All samples,	< 3 km from	> 3 km from plant		
		n=11	plan, n=5	$n=5^{1}$	n=1	
PCB-77	362,2	15 325	852,3	540,8	161 612	
PCB-81	77,40	2 432	68,14	9,13	26 372	
PCB-105	2 311	67 444	43 939	14 635	449 024	
PCB-114	196,2	4 727	3 028	1 275	30 488	
PCB-118	4 485	108 225	86 176	34 253	588 337	
PCB-123	123,57	4 278	1 831	978,2	33 010	
PCB-126	< d.l. (15)	648,6	400,2	66,35	4 801	
PCB-156	468,5	13 023	11 184	8151	46 582	
PCB-157	109,8	2 650	2 304	1424	10 509	
PCB-167	169,9	5 760	4766	3 297	23 052	
PCB-169	< d.l. (15)	136,9	10,55	24,17	1 332	
PCB-189	7,63	1 353	739,5	1700	2 692	
WHO-TEQ (PCB)	1,13	96,39	61,79	17,55	663,62	
PCB-28/31	31 746	939 233	47 118	11 501	10 038 464	
PCB-52	1 828	72 502	6 929	4 564	740 054	
PCB-153	3 122	93 686	69 225	97 189	198 472	
PCB-138	3 418	138 692	129 758	127 110	241 267	
PCB-180	918,6	147 595	118 823	192 529	66 791	
HCB	912,5	66 417	113 615	30 728	8 868	
Lindane	4 651	252 183	259 106	268 721	134 886	
o,p'-DDE	382,6	4 720	6 315	3 291	3 890	
p,p'-DDE	3 632	372 393	366 527	427 059	128 395	
o,p'-DDT	4 567	5 098	8 317	2 064	4 168	
p,p'-DDT	92 225	120 639	143 837	72 753	244 076	
\sum DDT and DDE	100 808	502 850	524 996	505 167	380 530	

Table 2. POPs levels in chicken eggs samples from Chapaevsk city (Samara region), (pg/g lipid weight)

References.

- 1. Fries G.F. J. Annim. Sci. 1995;73:1639.
- 2. Kluyev N., Cheleptchikov A., Brodsky E., Soyfer V. and Zhilnikov V. *Chemosphere* 2002; 46(9-10):1293.
- 3. COMMISSION REGULATION (EC) No 199/2006, 3 February 2006.
- 4. *The Egg Report*. Contamination of chicken eggs from 17 countries by dioxins, PCBs and hexachlorobenzene, 2005- IPEN
- 5. SanPiN 2.3.2.1078-1. (in russian)

¹ Excluding data in grey column.

Fig.1. Concentration of dioxin-like PCBs in chicken eggs samples from different regions of Russia (pg/g lipids WHO-TEQ).

Fig.2. Total concentration of DDT and DDE isomers in chicken eggs samples from different regions of Russia (mg/kg lipids).