COMPARING GC-MS AND LC-MS FOR THE DETERMINATION OF HBCD IN FOOD – RESULTS FROM AN INTERLABORATORY COMPARISON STUDY

<u>Haug LS</u>¹, Thomsen C¹, Becher G¹

Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, Oslo, Norway

Introduction

1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is the third most widely used brominated flame retardant in the world. HBCD has gained attention in the field of environmental surveillance¹ and has been shown to bioaccumulate in food chains²⁻³. Toxicological studies suggest that HBCD can disrupt the thyroid function and may have developmental neurotoxic effects⁴⁻⁵. Nevertheless, the technical use of HBCD might increase as a replacement for the Penta- and Octa-PBDE flame retardant formulations that have been banned in Europe and are being phased out in North America.

The term HBCD refers to the commercial product consisting of a mixture of mainly three diastereomers (α -, β - and γ -HBCD)⁶. While technical mixtures contain 70-90% of γ -HBCD, α -HBCD is often the dominating isomer in wildlife samples, especially at high trophic levels^{3,7-8}.

GC-MS or LC-MS are commonly used for the quantitative determination of HBCD. However, both of these wellestablished techniques have limitations. GC-MS operated in the electron-capture negative-ion mode is a very sensitive technique. However, HBCD stereoisomers undergo thermal rearrangement and decomposition at elevated temperatures used for GC separation and the isomers can not be chromatographically resolved. In contrast, reversedphase chromatography easily separates the HBCD-stereoisomers and HPLC coupled to electrospray ionisation MS is a versatile tool for the isomer-specific determination of HBCD. However, the sensitivity of LC-MS is lower than that of GC-MS, and HBCD can only be detected in samples with relatively high contamination levels.

In order to assess the quality of the determination of HBCD, the Department of Analytical Chemistry at the Norwegian Institute of Public Health, Oslo, Norway organised an interlaboratory comparison study, which took place from fall 2005 to spring 2006.

The purposes of this study were to a) assess the comparability of results from the different analytical techniques, b) to provide a quality assurance instrument for the participating laboratories, and c) to assess the readiness of expert laboratories to determine HBCD in biological environmental samples.

Materials and Methods

The chosen test materials were Herring from the Baltic Sea (15g), Cod liver oil (~5g) and of a standard solution of 0.500 ng/ μ l of α -HBCD in toluene.

The laboratories were requested to determine either the total HBCD concentration (GC-MS), or the concentrations of α -HBCD, β -HBCD and γ -HBCD (LC-MS or LC-MS/MS), or both.

Laboratories should perform the determinations using their own methods for sample preparation and instrumental analysis, their own standards and quantification procedures, and their own method for lipid determination.

Results and Discussion

Methods

Of the 19 laboratories invited world-wide, 12 laboratories registered and 10 reported results. Three laboratories reported results determined by both GC-MS and LC-MS. Four laboratories made their determinations only by LC-MS and three only by GC-MS.

A wide variety of extraction and cleanup procedures were used among the laboratories. The lipid extraction procedures used are well known methods like ASE, Soxhlet extraction, liquid-liquid extraction and cold-column extraction. Lipid removal was performed using partitioning with sulphuric acid, column extraction on silica based columns and/or Florisil columns or by gel permeation chromatography.

Reported results

In the tables below the results for detected isomers or total HBCD are presented for each laboratory. In the statistical calculations the non-detects as well as outliers according to Dixons Q-test have been excluded.

		GC, pg/µl	LC, pg/µl	both methods, pg/µl
	2	502		502
	3		482	482
	4	553		553
0	5		463	463
code	7	490		490
ab (7		510	510
Ц	8	482		482
	9	506		506
	11		521	521
	12	599		599
target value		500	500	500
min max		482	463	463
		599	521	599
	median	504	496	504
	mean	522	494	511
	std dev	45	26	40
	RSD %	9	5	8

Table 1. Individual results for α -HBCD in standard solution in pg/µl

Evaluation of total HBCD

The reported results for GC, LC and both GC/LC were found to be normally distributed. When comparing the results determined by GC-MS and LC-MS using a t-test (p=0.05), no statistically significant differences were found, although the results determined by GC-MS were slightly higher than the LC-MS results both for herring, cod liver oil and the standard solution. Thus, the possibility of degradation of HBCD during GC does not seem to influence the quantification. Due to the wide variety of extraction and cleanup methods used, the impact of the sample preparation on the results could not be evaluated.

The calculated mean of the total HBCD concentration on fresh weight basis including data from both methods, were 0.40 ng/g (range 0.20 ng/g - 0.64 ng/g) in herring and 7.0 ng/g (range 5.0 ng/g - 9.7 ng/g) in cod liver oil. The RSDs were 35% and 21% for herring and cod liver oil, respectively. For comparison, the RSD for the standard solution was 8%.

		total HBCD			α-HBCD	β-HBCD	γ-HBCD
		GC, pg/g	LC, pg/g	both methods, pg/g	pg/g	pg/g	pg/g
	2	391		391			
	3	1	299	299	299		
	4	640		640			
	4	I	1430 ^b	1430 ^b	1280 ^b		150
de	5	l	199	199	199		
	7	370		370			
Lal	7	l	400	400	350	20	30
	8	584		584			
	9	472		472	407 ^c	14 ^c	51 ^c
	11	1	382	382	352		30
	12	250		250			
	min	250	199	199	199	14	30
	max	640	400	640	407	20	150
1	median	432	341	387	350	17	40
	mean	451	320	399	321	17	65
;	std dev	145	92	138	78	4	57
F	RSD %	32	29	35	24	23	88

Table 2. Individual results for herring in pg/g fresh weight^a.

^a Lab 6 did not detect any isomers above their detection limit and are left out from the table. ^b Outlier, excluded according to Dioxins Q- test.

^c The relative contribution of the isomers is determined by LC-MS, their amount is based on the total quantity determined by GC-MS.

		total HBCD			a-HBCD	β-HBCD	γ-ΗΒCD
		GC, pg/g	LC, pg/g	both methods, pg/g	pg/g	pg/g	pg/g
	2	5865		5865			
	3		5910	5910	5910		
	4	7095		7095			
	4		6400	6400	4700		1700
de	5		4992	4992	4992		
00 00	7	8860		8860			
Lat	7		8250	8250	7450	400	400
	8	7155		7155			
	9	9697		9697	8691 ^b	399 ^b	607 ^b
	11		7710	7710	7060	332	315
	12	5500		5500			
	min	5500	4992	4992	4700	332	315
ma media mea	max	9697	8250	9697	8691	400	1700
	nedian	7125	6400	7095	6485	399	504
	mean	7362	6652	7039	6467	377	756
s	td dev	1644	1327	1481	1541	39	642
F	RSD %	22	20	21	24	10	85

Table 3. Individual results for cod liver oil in pg/g fresh weight^a.

^a Lab 6 did not detect any isomers above their detection limit and are left out from the table. ^b The relative contribution of the isomers is determined by LC-MS, their amount is based on the total quantity determined by GC-MS.

Evaluation of the isomer specific determination

The relative contribution in percent of α -, β - and γ -HBCD to the total HBCD was found to be 80:4:16 and 85:5:10 for herring and cod liver oil, respectively. As can be seen from tables 2 and 3, the variation of the α -HBCD and β -HBCD results is comparable to the variations for the total HBCD concentration. However, the RSDs for γ -HBCD in herring and cod liver oil are considerably higher. The reason for this is that one of the reported values is much higher than all the others, but due to the limited number of reported values for γ -HBCD this value was not identified as an outlier.

Sensitivity

All laboratories using GC-MS were able to detect HBCD in both samples. All, except one laboratory using LC-MS, detected α -HBCD, while just two and three of six laboratories were able to detect β -HBCD in herring and cod liver oil, respectively. Four of six laboratories detected γ -HBCD in both herring and cod liver oil. The reported detection limits for β - and γ -HBCD were 10 – 2800 pg/g for herring and 25-13300 pg/g for cod liver oil.

Summary

No statistically significant differences were found between results obtained by LC-MS and GC-MS for total HBCD. The quality of the determinations were good, with few detected outliers and RSDs in the same range as for tetra to hepta PBDEs obtained in another study on the same cod and herring sample (*Interlaboratory Comparison on Dioxins in Food 2005*)⁹. The present study has shown that laboratories are able to determine HBCD in biological environmental samples with satisfactory quality.

Acknowledgements

The laboratories are acknowledged for their participation in this interlaboratory comparison and their interest in its overall objectives, thereby making it clear that they value good analytical performance. All the individual analysts are acknowledged for their contributions to the results.

We are grateful to Cambridge Isotope Laboratories, Inc. for providing the standard solution for this interlaboratory study. We thank Marie Aune at the National Food Administration in Sweden for providing us the Baltic herring and the Oslo based company Peter Möller AS for the cod liver oil.

References

1. Law RJ, Kohler M, Heeb NV, Gerecke AC, Schmid P, Voorspoels S, Covaci A, Becher G, Janák K, Thomsen C. *Environ Sci Technol* 2005;39:281A.

2. Leonards P, Vethaak D, Brandsma S, Kwadijk C, Mici D, Jol J, Schoute P, de Boer J. *Proceedings of The Third International Workshop on Brominated Flame Retardants, BFR 2004, Toronto, Canada* 2004;283.

3. Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP, Belpaire C, Leonards PEG, Van Leeuwen SPJ, de Boer J. *Environ Sci Technol* 2004;38:5497.

4. Darnerud PO. Environ Int 2003;29:841.

5. Birnbaum LS, Staskal DF. Environ Health Perspect 2004;112:9.

6. Tomy GT, Budakowski W, Halldorson T, Whittle DM, Keir MJ, Marvin C, MacInnis G, Alaee M. *Environ Sci Technol* 2004;38:2298.

7. Janák K, Covaci A, Voorspoels S, Becher G. Environ Sci Technol 2005; 39:1987.

8. Becher G. Chemosphere 2005;58:989.

9. Haug SL, Becher G. *Interlaboratory Comparison on Dioxins in Food 2005, Sixth Round of an International Study,* Report 2005:7, Norwegian Institute of Public Health, Oslo, ISBN 82-8082-145-7.