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Introduction 
The potential use of quantitative structure-activity relationship (QSAR) models in risk 
assessment processes (RA) has been stressed in recent years. QSARs provide a non-
testing method that could be an aid in priority settings and classifications, to fill existing 
data gaps, reduce the number of animal tests and save costs. QSAR modelling is based on 
the assumption that the chemical properties of a molecule are correlated to its biological 
activity. Chemicals with similar physicochemical properties will thus have common 
biological features and act via comparable mechanisms of action. The QSAR model 
includes calculated or experimental values making up a matrix of descriptors related to 
the physical and chemical properties of the chemicals, and a response matrix, of 
biological activity or a physical or chemical property. The QSAR model is the 
mathematical expression relating the two matrices. A QSAR model produces quantitative 
measures of the studied response whereas a qualitative relationship between the chemical 
information and the response is named structure-activity relationship (SAR). A SAR 
could be regarded as a structural alert approach where certain fragments or substructures 
are correlated to the studied response. 
 
QSARs have been used for many years in the field of environmental chemistry and 
toxicology, although the acceptance and number of applications are much greater in the 
pharmaceutical science. The regulatory use of QSARs is today relatively low with the 
exception of a few countries (Cronin et al. 2003a,b). In Europe, the Danish 
Environmental Protection Agency (EPA) has created a QSAR database of more than 
166 000 substances including various environmental and human health endpoints. 
Canada is extensively using QSARs for categorising the 23 000 chemicals on their 
Domestic Substance List. In the United States, the US EPA, the US Food and Drug 
Administration (FDA), and other governmental organizations apply models for predicting 
various properties. In the EU, the White Paper on the Strategy for a future Chemicals 
Policy published in 2001 indicated the potential use of QSARs as a means to improve the 
risk assessment of the large number of chemicals in use (European Commission, 2001). 
In the proposal for a new chemicals legislation in Europe entitled Registration, 
Evaluation, Authorisation and Restriction of Chemicals (REACH), which followed the 
White Paper, both (Q)SARs and read across/grouping of chemicals are described as 
methods to develop necessary information (European Commission, 2003). In order to 
internationally harmonize the development and validation of QSARs, the Organisation 
for Economic Co-operation and Development (OECD) initiated in 2003 a work 
programme on QSARs (OECD, 2004). 
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The development of QSAR models 
The process of developing a QSAR model is initiated by the definition of the studied 
chemical domain and chemical descriptors calculated, should capture the intrinsic 
structural characteristics of the compounds. Subsequently, responses are measured or 
captured from databases or the literature and a QSAR model is calculated. The final step 
is the process of validation and then the model could be used for predictions within its 
applicability domain. Classical QSARs models were most often built on homologues 
series of chemicals, where for example the chain length of hydrocarbons was changed. A 
large number of models exist constructed for well defined chemical domains, e.g. models 
for halogenated aliphatic hydrocarbons (Eriksson et al. 1996), di- and tri-
hydroxybenzenes (Aptula et al. 2005), polychlorinated biphenyls (Andersson et al. 2000), 
and brominated diphenylethers (Harju et al. 2002).  
 
Mathematical methods are needed to bridge the information describing the compounds 
chemical and structural variation with their measured response. Common regression 
based methods used for continuous response data are multiple linear regression (MLR), 
principal component regression (PCR), partial least squares regression to latent structures 
(PLS), and various neural network methods. These methods are generally used to tailor 
models for a certain set of chemicals and endpoint. Expert systems, in contrast, 
incorporate a multitude of models or expert knowledge in combination with defined 
structure-based rules to reach a prediction for a wider range of chemicals. More details on 
the multivariate projection methods can be found in e.g. Eriksson et al. 2001 and on 
neural networks in e.g. Zupan and Gasteiger, 1999. 
 
The definition of class of chemicals considered is the crucial first step in the development 
of a QSAR model since the chemical domain included in the development of a model 
defines its limits and applicability. If not response data exists in the domain of interest it 
is important to perform testing representative for the whole domain. It is important to 
realize that outside these boundaries the predictions will be extrapolations as compared to 
the interpolations of chemicals defined to belong to the assessed chemical domain. For 
more details on the development of QSARs we refer to the recent reviews by Cronin et 
al. 2003a,b, Schultz et al. 2003a,b, Walker et al. 2003, Eriksson et al. 2003, and Cronin 
and Livingstone, 2004. 
 
Chemical descriptors 
Today thousands of descriptors are available and most of them can be calculated in silico, 
i.e. directly in the computer without experiments. This is an advantage as predictions of 
compounds can be made before they are available on the market or even synthesized. In 
general, chemical descriptors are considered to describe the compounds steric, 
hydrophobic, and electronic nature. It is commonly accepted that these properties are 
related to the compounds biological activity. Chemical descriptors range from simple 
counts of atoms and functional groups to electronic characteristics as calculated using 
quantum chemistry. The most commonly used chemical descriptor in QSAR modelling is 
however the partition coefficient between octanol and water (Kow). Recent reviews of 
chemical descriptors include Todeschini and Consonni, 2000 and Karelson, 2000. 
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Validation and applicability domain 
A QSAR model should be validated by internal and external means. The most demanding 
validation procedure is to use an external set of compounds (validation set or test set) that 
were not use as the model was calculated. These compounds should be structurally 
representative of the studied chemical domain. However, a true external set of 
compounds may not be available or the resources limited to measure the activity of 
additional compounds. One crucial measure of a QSAR model, which is included in the 
OECD principles, but which definitions has not reached general consensus is the 
applicability domain. The establishment of this domain sets the use of a model and 
predictions of compounds defined as within that domain can be interpreted as 
interpolations. Accordingly, the response of compounds outside the domain are 
extrapolations and thus less valid. The applicability domain is rarely defined and methods 
differ depending on the type of model. Recently, the applicability domain was defined as 
“the response and chemical structure space in which the model makes predictions with a 
given reliability” (Netzeva et al. 2005). The domain can be defined by using ranges of 
descriptors, structural rules, or by statistical means to define a chemical variation. One 
starting point, independent on applied QSAR method, to define the applicability domain 
is the chemical variation as covered by the training set. The strategy behind the selection 
of the training set is hence of crucial importance for the validity of the model.  
 
Conclusions 
Non-testing methods are urgently needed in order reach better understanding of the fate 
and effects of the huge number of chemicals that are in commercial use. QSARs provide 
one attractive alternative that have shown great potential for filling existing data gaps for 
several properties. However, it is of crucial importance that the users of QSARs are well 
aware of their limitations and intended use of the model. The data set used to train the 
model may be erroneous, the applied descriptors have limitations, the response that is 
modelled has an error, and the regression method may yield an overfitted model. The 
applicability domain of the model needs also to be understood so that responses of only 
members of the domain are predicted. One major and basic problem that hampers the 
development of new QSAR models is the lack of response data with high quality. A 
systematic QSAR strategy strives to develop such data sets for structurally representative 
chemicals from defined chemical domains (Tysklind and Andersson 1998). If correctly 
used QSARs have a great potential in future RA processes and generally accepted 
validation procedures could be one way to trigger QSAR models future employment. 
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