A study on the behavior of Dioxins in various coated silica gel

Hiroshi Ohba¹, Sayaka Ozawa, Kenji Iwasaki, Kazuo Iwaki²

¹Ebara Research Co., Ltd. ²Ohu University

Introduction

Multilayer silica gel column (see Fig. 1) treatment is well known cleanup technique for Dioxins analysis and has been employed by many Dioxins analysis official methods in Japan. For contaminated PCB reduction, heated silica gel has been used to prepare the coated silica gel for multilayer silica gel column in our laboratory. Sometimes the recovery rate of some ¹³C labelled PCDD used as internal standards were below the line of the QA/QC requirement (50-120 %) of each methods (see Table 1). The loss of internal standards generally appears on rich matrix interferences containing samples, however, this phenomenon also appeared on low matrix interferences containing samples and treated waste waters. On basic alumina column treatment or activated carbon column treatment, the loss of OctaCDD and OctaCDF is recognized but not of Tetra, Penta and HexaCDD. Therefore multilayer silica gel column, silver nitrate coated silica gel and sulfuric acid coated silica gel, this study investigated the behavior of dioxins on them individually.

Materials and Methods

Reagents: silica gel 60(Merck, 63-200 µm), silver nitrate (Wako Pure Chemical, JIS special grade), sulfuric acid (Wako Pure Chemical, super special grade), anhydrous sodium sulfate (Kanto Kagaku, pesticide residue and PCB analysis grade), n-hexane (Kanto Kagaku, dioxin analysis grade), ¹³C labelled PCDD/PCDF solution (Wellington laboratories, 100 ng/mL or 200 ng/mL for each compounds), ¹³C labelled DL-PCB solution (Wellington laboratories, 100 ng/mL for each compounds), syringe spike solution for PCDD/PCDF(Wellington laboratories, 100 ng/mL for each compounds), syringe spike solution for DL-PCB(Wellington laboratories, 100 ng/mL for each compounds).

Methods: (1) Treatment of silica gel; at this study, following treated silica gels were used. (a) not heated, (b) flash heated from room temperature to 400 °C and held for 4 hours and (c) held 105 °C for 4 hours and heated to 400 °C at 10 °C/minute and held for 4 hours. (2) Coated silica gel preparation; (a) 25 g of silver nitrate was dissolved in 40 mL of pure water. 225 g of silica gel was added to this aqueous solution and shaken well. Then, it was evaporated at 50 °C for 3 hours with light shielding and silver nitrate coated silica gel was obtained. (b) 44 g of sulfuric acid was added to 56 g of silica gel or 22 g of sulfuric acid was added to 78 g of silica gel and shaken well. Then 44 % or 22 % sulfuric acid coated silica gel was obtained. (3) Elute examination; the individual coated silica gel columns were prepared as shown in Fig. 1 respectively. Each 10 μ L of ¹³C labelled PCDD/PCDF solution and ¹³C labelled DL-PCB solution were added to coated silica gel columns and eluted with 100 mL of n-hexane. The eluate was concentrated to 50 μ L and before HR-GC/MS measurement, added each 10 μ L of syringe spike solutions of PCDD/PCDF and DL-PCB. Then the recovery rates of ¹³C labelled PCDD/PCDF and DL-PCB were calculated from the peak area ratio of related compounds with the results of HR-GC/MS measurement.

Results and Discussion

The recovery rates of ¹³C labelled PCDD/PCDF and DL-PCB were shown in Table 2. On all of the silver nitrate coated silica gel columns, the recovery rates were sufficient. On the sulfuric acid coated silica gel columns by using heated silica gel, the average recovery rates of Tetra and PentaCDD were not satisfied to the requirement, especially, those of TetraCDD were less than 10 %. On the other hands, those of PCDF and DL-PCB were acceptable on each sulfuric acid coated silica gel. From these results, the sulfuric acid coated silica gel by using heated silica gel is concluded to be one of the causes of low recovery phenomenon. Meanwhile, the further investigation of the coated silica gel is necessary for other possible causes of this phenomenon.

Acknowledgements

The authors would like to appreciate Yasutaka Hirata, Akemi Yamamoto and Eiko Sasaki for their support of this study.

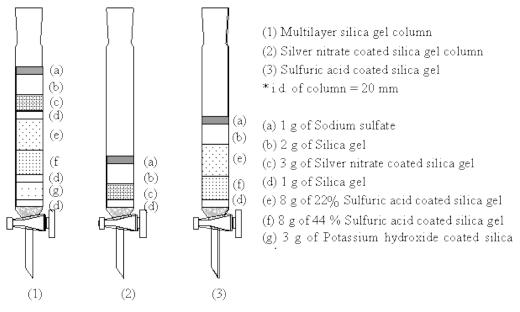


Fig.1 Multilayer silica gel column and coated silica gel

		of sample		
130 0070	Blank test	Treated waste water		
¹³ C ₁₂ -2,3,7,8-TetraCDD				
¹³ C ₁₂ -1,2,3,7,8-PentaCDD	72	25		
¹³ C ₁₂ -1,2,3,4,7,8-	73	15		
HexaCDD				
¹³ C ₁₂ -1,2,3,6,7,8-	75	17		
HexaCDD				
¹³ C ₁₂ -1,2,3,7,8,9-	77	23		
HexaCDD				
¹³ C ₁₂ -1,2,3,4,6,7,8-	96	12		
HeptaCDD		4.0		
¹³ C ₁₂ -OctaCDD	86	10		
¹³ C ₁₂ -2,3,7,8-TetraCDF	83	59		
¹³ C ₁₂ -1,2,3,7,8-PentaCDF	91	82		
¹³ C ₁₂ -2,3,4,7,8-PentaCDF	100	105		
¹³ C ₁₂ -1,2,3,4,7,8-	85	95		
HexaCDF				
¹³ C ₁₂ -1,2,3,6,7,8-	87	99		
HexaCDF				
¹³ C ₁₂ -1,2,3,7,8,9-	103	96		
HexaCDF				
¹³ C ₁₂ -2,3,4,6,7,8-	98	95		
HexaCDF				
¹³ C ₁₂ -1,2,3,4,6,7,8-	101	95		
HeptaCDF	400	400		
¹³ C ₁₂ -1,2,3,4,7,8,9-	102	102		
HeptaCDF	86	86		
¹³ C ₁₂ -OctaCDF				
¹³ C ₁₂ -3,3',4,4'-TetraCB	103	83		
¹³ C ₁₂ -3,4,4',5-TetraCB	109	86		
¹³ C ₁₂ -3,3',4,4',5-PentaCB	120	90		
¹³ C ₁₂ -3,3',4,4',5,'5-	103	94		
HexaCB				
¹³ C ₁₂ -2,3,3',4,4'-PentaCB	108	95		
¹³ C ₁₂ -2,3,4,4',5-PentaCB	105	94		
¹³ C ₁₂ -2,3',4,4',5-PentaCB	113	91		
¹³ C ₁₂ -2',3,4,4',5-PentaCB	108	93		

Table 1 The example of low recovery rates of ¹³C labelled PCDD/PCDF and DL-PCB

Organohalogen Compounds - Volume 67 (2005)

¹³ C ₁₂ -2,3,3',4,4',5-HexaCB	92	93
¹³ C ₁₂ -2,3,3',4,4',5'- HexaCB	93	88
¹³ C ₁₂ -2,3',4,4',5,5'- HexaCB	90	91
¹³ C ₁₂ -2,3,3',4,4',5,5'- HeptaCB	100	103

Unit: %

				ted silica gel		
	Silver nitrate coated			Sulfuric acid coated		
130 2 2 7 8 Tatra CDD	(a)	(b)	(c)	(a)	(b)	(c)
¹³ C ₁₂ -2, 3,7,8-TetraCDD	97	103	108	101	6	0
¹³ C ₁₂ -1,2,3,7,8-PentaCDD	106	98	100	101	61	28
¹³ C ₁₂ -1,2,3,4,7,8-						
HexaCDD	104	97	100	105	69	68
¹³ C ₁₂ -1,2,3,6,7,8-						
HexaCDD	103	96	98	102	72	81
¹³ C ₁₂ -1,2,3,7,8,9-						
HexaCDD	101	101	100	110	77	71
¹³ C ₁₂ -1,2,3,4,6,7,8-						
HeptaCDD	105	99	94	94	111	95
¹³ C ₁₂ -OctaCDD	96	93	94	113	108	97
¹³ C ₁₂ -2,3,7,8-TetraCDF	98	102	102	99	102	106
¹³ C ₁₂ -1,2,3,7,8-PentaCDF	103	104	101	106	108	85
¹³ C ₁₂ -2,3,4,7,8-PentaCDF	101	101	107	101	105	99
¹³ C ₁₂ -1,2,3,4,7,8-						
HexaCDF	106	96	97	104	109	91
¹³ C ₁₂ -1,2,3,6,7,8-						
HexaCDF	104	98	97	104	110	100
¹³ C ₁₂ -1,2,3,7,8,9-						
HexaCDF	107	107	98	112	118	92
¹³ C ₁₂ -2,3,4,6,7,8-						
HexaCDF	100	105	90	104	107	94
¹³ C ₁₂ -1,2,3,4,6,7,8-						
HeptaCDF	104	103	93	111	113	101
¹³ C ₁₂ -1,2,3,4,7,8,9-						
	99	101	99	117	122	105
¹³ C ₁₂ -OctaCDF	92	98	94	107	111	99
¹³ C ₁₂ -3,3',4,4'-TetraCB	95	89	102	88	79	99
¹³ C ₁₂ -3,4,4',5-TetraCB	100	88	99	85	85	97
¹³ C ₁₂ -3,3',4,4',5-PentaCB	104	84	107	112	88	91
¹³ C ₁₂ -3,3',4,4',5,'5-						
HexaCB	104	90	115	86	92	93
¹³ C ₁₂ -2,3,3',4,4'-PentaCB	99	90	95	85	93	97

Table 2 The average recovery rates of ¹³C labelled PCDD/PCDF and DL-PCB

¹³ C ₁₂ -2,3,4,4',5-PentaCB	98	88	97	88	92	94
¹³ C ₁₂ -2,3',4,4',5-PentaCB	94	89	97	86	89	95
¹³ C ₁₂ -2',3,4,4',5-PentaCB	94	89	101	86	91	95
¹³ C ₁₂ -2,3,3',4,4',5-HexaCB	94	87	105	97	94	94
¹³ C ₁₂ -2,3,3',4,4',5'-						
HexaCB	94	89	102	93	89	94
¹³ C ₁₂ -2,3',4,4',5,5'-						
HexaCB	94	86	101	87	90	96
¹³ C ₁₂ -2,3,3',4,4',5,5'-						
HeptaCB	96	90	101	98	97	98

Unit; %

Number of experiment; 3

Type of silica gel;

(a) not heated

(b) flash heated from room temperature to 400 $^{\circ}\text{C}$ and held for 4 hours

(c) held 105 °C for 4 hours and heated to 400 °C at 10 °C/minute and held for 4 hours.