EMV - Body Burden and Dietary Intake

Levels and correlations between PCBs and PCDD/Fs concentrations in Belgian plasma

Nathalie Van Wouwe ${ }^{1}$, Noëmi Debacker ${ }^{1}$, André Sasse ${ }^{1}$, Vincent Hanot ${ }^{1}$, Francis Sartor ${ }^{1}$, Herman Van Oyen ${ }^{1}$, Leo Goeyens ${ }^{1}$
${ }^{1}$ Scientific Institute Of Public Health

Introduction

Following the dioxin event of 1999, the Scientific Institute of Public Health set up a survey to assess the health effect of the crisis among Belgian citizens. Dioxin analyses, performed using plasma samples from 248 donors, revealed a slight increase of the concentration of 2 furan congeners between 1998 and 2000^{1}. Given that the pollution of the food chain was due to an Arochlor contamination ${ }^{2}$, analyses of the 7 marker PCBs were also performed on a limited number of these samples.

This abstract presents the dioxin and PCB levels, obtained through analyses of 50 paired samples, and investigates the Pearson correlation coefficients for the organochlorine compounds under study.

Materials and Methods

Studied population and sampling protocol

The studied population and the sampling protocol of this survey were presented earlier ${ }^{1}$. Fifty donors were selected for the PCB analyses through a stratified sampling method: firstly, the levels of the three furan congeners that were significantly present in the incident related food samples (1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF and 1,2,3,4,7,8-HxCDF) were added up per donor for 1998 and 2000 separately. Next the sum of 2000 was subtracted from the sum of 1998 . This difference was sorted in ascending order of magnitude (from - $65 \mathrm{pg} / \mathrm{g}$ fat up to $43 \mathrm{pg} / \mathrm{g}$ fat) and 10 categories were created. In each of these 10 categories 5 donors were randomly selected using Stata 8 . The obtained sample consists mainly of men (86%). The mean age is 45 ± 11 years (range: 2462 years). And the mean BMI is $27 \pm 4 \mathrm{~kg} / \mathrm{m}^{2}$ (range: $\left.22-37 \mathrm{~kg} / \mathrm{m}\right)^{2}$.

Chemical analyses

Analyses of the 21 dioxin-like congeners ($17 \mathrm{PCDD} / \mathrm{Fs}+4 \mathrm{cPCBs}$) and the lipid contents were performed by the Centre of Analysis of Residues in Traces in Liège (CART) ${ }^{1}$. Analyses of the 7 marker PCBs (28,52, 101, 118, 138, 153, 180) were carried out by the Scientific Institute of Public Health using GC-MS/MS (PolarisQ, Finnigan).

Statistical analyses

The PCDD/F and PCB levels were log-transformed in order to obtain a normal distribution. Afterwards a paired sample t-test was used to compare the PCDD/F and PCB levels between 1998 and 2000. A probability of 0.05 or less was considered as significant. STATISTICA ${ }^{\circledR}$ ' 98 was used to calculate the Pearson 1998 correlation coefficients (r) of some organochlorine compounds (compounds in white in Table 1).

Results and Discussion

Table 1 presents the range, the median and the mean concentrations for the different PCDD/F and PCB congeners. When expressed in pg per g lipid, the most abundant dioxin congeners are OCDD (80\%), 1,2,3,4,6,7,8 HpCDD (9\%) and 1,2,3,6,7,8 HxCDD (8\%). The furans are dominated by 2,3,4,7,8 PeCDF which counts for 40% of the total PCDFs. 1,2,3,6,7,8 HxCDF, $1,2,3,4,6,7,8 \mathrm{HpCDF}$ and $1,2,3,4,7,8 \mathrm{HxCDF}$ contribute each about 16% to the total PCDFs. The faster metabolisation of the lower chlorinated congeners induces the predominance of the PCBs 169 and 126 for the coplanar PCBs and of the PCBs 153, 180 and 138 for the 7 markers PCBs. These profiles are similar to those previously observed in Belgium and elsewhere ${ }^{2,3}$. A comparison between 1998 and 2000 shows an increase of the $2,3,4,7,8$ PeCDF levels. Although not significant in this subsample, this is probably due to the incident ${ }^{1,2}$. The levels of the PCBs 77,81 and 126 are slightly increasing. This induces a rise in the total level cPCBs but not significantly. The mean concentrations of the 7 markers remain more or less constant. Only PCB101 shows a significant increase ($0.177 \mathrm{ng} / \mathrm{g}$ lipids in 1998 to $0.235 \mathrm{ng} / \mathrm{g}$ lipids in 2000). As a result of the decreasing PCDD TEQvalue that cancels out the increased PCDF TEQ-value the mean total TEQ remains unchanged. The higher PCDF TEQ-value could be explained by the dioxin incident which was predominated by a furan contamination ${ }^{2}$.

Table 2 presents the Pearson correlation coefficients (r) of 1998. For the PCDDs and PCDFs, the tetra-, penta- and hexa-

EMV - Body Burden and Dietary Intake

congeners are correlating well. The r-value decreases with increasing degree of chlorination. Similarly, the cPCBs and the 7 markers PCBs present better correlations with the lower chlorinated PCDD/F congeners. In most cases, the different PCDD/F and PCB congeners are correlating best with PCB 153. However, PCB 118 presents the best correlation with the cPCBs TEQ-value and with PCB 126. Correlations between the 4 markers PCBs present high coefficients, excepting the correlation between PCB 118 and PCB 180. The r-values between the 7 markers PCBs and TEQ values for PCDDs, PCDFs and cPCBs are $0.8,0.76$ and 0.71 respectively. In comparison to Longnecker et al ${ }^{4}$, correlation coefficients between the lower chlorinated dioxins are higher in this paper. This is probably due to the modification performed on the GC-HRMS data set before statistical analysis. More details with regard to those modifications are presented elsewhere ${ }^{5}$. The concentration's estimation performed for congeners under LOQ and for congeners presenting interferences has probably reinforced the existing relation between some congeners. Hence, it seems normal to detect an enhancement of the r-value. On the other hand, some congeners present low r-values such as $1,2,3,4,6,7,8 \mathrm{HpCDF}$, for which most correlations are not significant. Lower coefficients are also observed between OCDD, 2,3,4,7,8 PeCDF, PCDD and the 7 marker PCBs. A comparison between 1998 and 2000 (data not shown) reveals higher correlation coefficients in 1998 for a large part of the congeners. Exceptions are seen for 2,3,4,7,8 PeCDF, 1,2,3,4,7,8 HxCDF, total PCDF, PCB 126, PCB 118 and for $1,2,3,4,6,7,8$ HpCDF. For the latter correlations become significant in 2000. For most congeners, the difference between 1998 and 2000 in r-values*100 are lower than 10. Those coefficients can thus be considered as quite constant in time.

References

1. Debacker N., Sasse A. ,Van Wouwe N., Eppe G., Xhrouet C., Windal I., Carbonnelle S., Van Overmeire I., De Pauw E., Sartor F., Goeyens L., Van Oyen H., 2004, Organohal. Comp. Vol 66, 2630-2636
2. Bernard A., Fierens S., 2002, Int. J. Toxicol, 21(5): 333-340
3. Fierens S. Mairesse H., Heiler J-F., Bernard A., (2003), Organohal. Comp. 63, 445.
4. M. Longnecker, J.J. Ryan, B. Gladen, A. Schecter, 2000, Archives of Environmental Health, Vol 55 (3), 195-200
5. N. Van Wouwe, N. Debacker, A. Sasse, I. Windal, H. Vanderperren, G. Eppe, C. Xhrouet, S. Carbonnelle, I. Van Overmeire, E. De Pauw, H. Van Oyen, F. Sartor, L. Goeyens, 2004, Organohal. Comp. Vol 66, 630-636

Table 1: Concentrations of organochlorine compounds observed in Belgian plasma in 1998 and 2000

pg/q lip		1998 ($\mathrm{n}=50$)				2000 ($\mathrm{n}=50$)					pvalue
		\%				\%					
	>DL meanmedianmin max					>DL meanmedianmin max					(t test)
2,3,7,8 TCDD	88	1,8	1,6	0	4,7	82	1,7	1,7	0	5,2	0,86
1,2,3,7,8											
PeCDD	96	7,2	7,0	0	18,6	98	7,0	6,1	0	16,0	0,21
1,2,3,4,7,8											
HxCDD	98	6,0	4,6	0	27,0	98	5,6	5,1	0	33,4	0,91
1,2,3,6,7,8											
HxCDD	100	38,4	37,1	6,1	113,1	100	36,0	37,6	9,2	83,8	0,39
1,2,3,7,8,9											
HxCDD	92	5,0	4,8	0	13,2	88	4,4	4,8	0	9,2	0,41
1,2,3,4,6,7,8 5,0 4,8 0,											
HpCDD	100	41,9	32,6	3,9	180,4	98	41,5	39,9	0	120,4	0,38
OCDD	100	393,8	293,5	57,7	2611,4	100	339,5	281,8	40,8	1624,0	0,28
2,3,7,8 TCDF	38	0,4	0,0	0	3,2	44	0,5	0,0	0	3,9	0,96
1,2,3,7,8											
PeCDF	20	0,2	0,0	0	1,6	26	0,2	0,0	0	1,4	0,77
2,3,4,7,8 0,2 0,0 0,2 0,0 0,4											
PeCDF	98	19,7	17,6	0	44,1	100	21,7	21,2	2,2	56,3	0,62
1,2,3,4,7,8											
HxCDF	98	7,3	6,8	0	18,5	96	6,7	6,3	0	14,3	0,48
1,2,3,6,7,8											
HxCDF	100	8,8	8,1	1,0	24,3	98	8,2	8,5	0	18,8	0,45
1,2,3,7,8,9											
HxCDF	2	0,0	0,0	0	1,2	0	0,0	0,0	0	0,0	-
2,3,4,6,7,8 0,0 0,0											
HxCDF	90	2,6	2,5	0	7,7	88	2,4	2,3	0	5,7	0,94
Organoha	C	mpoun	- Volu	ume	(2005)			178			

EMV - Body Burden and Dietary Intake

1,2,3,4,6,7,8											
HpCDF	100	8,2	7,2	1,1	28,9	100	7,2	5,8	0,8	17,4	0,1
1,2,3,4,7,8,9											
HpCDF	8	0,1	0,0	0	1,6	2	0,0	0,0	0	0,8	
OCDF	42	1,3	0,0	0	10,7	46	1,9	0,0	0	14,2	0,81
Total PCDD	100	494	401	76	2886	100	436	363	58	1788	0,37
Total PCDF	100	49	44	11	120	100	49	47	13	111	0,81
PCB 77	16	15,3	0,0	0	187,9	20	18,7	0,0	0	164,7	0,73
PCB 81	16	4,5	0,0	0	79,9	36	25,7	0,0	0	302,7	0,71
PCB 126	100	63,9	44,6	0	273,3	100	65,8	57,5	6,0	318,9	0,95
PCB 169	100	93,4	85,2	15,1	1221,5	100	92,0	83,0	12,7	230,8	0,57
Total PCBc	100	177	152	22	495	100	202	169	27	475	0,27
pg TEQ/g lip											
TEQ PCDD	100	14,4	13,7	1,9	38,0	100	13,7	11,7	1,8	29,5	0,58
TEQ PCDF	100	11,9	11,1	1,4	27,4	100	12,7	12,3	2,0	32,1	0,54
TEQ PCBc	100	7,3	5,6	0,3	29,5	100	7,5	6,9	0,9	33,5	0,58
Total TEQ	100	34	30	5	95	100	34	33	5	85	0,87
$n g / \mathrm{glip}$											
PCB 28	78	0,8	0,6	0	4,4	78	0,8	0,6	0	4,8	0,47
PCB 52	96	0,4	0,3	0	2,1	92	0,4	0,3	0	2,1	0,25
PCB 101	52	0,2	0,0	0	2,2	62	0,2	0,1	0	1,6	0,05
PCB 118	100	13,4	9,6	3,5	46,3	100	13,3	11,4	0	51,1	0,87
PCB 138	100	74,9	67,7	25,8	168,8	100	73,1	67,4	21,1	159,6	0,43
PCB 153	100	137,3	126,9	47,2	2293,6	100	134,9	132,7	35,3	272,1	0,62
PCB 180	100	105,5	99,4	29,9	9244,7	100	105,5	99,5	25,1	232,2	0,78
7 markers											
PCB	100	333	312	107	717	100	328	322	85	654	0,75

Table 2: Pearson correlation coefficient (x100) among Log concentrations of organochlorine compounds for samples of 1998

EMV - Body Burden and Dietary Intake

PCB 126
PCB 169
PCBc
TEQ PCDD
TEQ PCDF
TEQ PCBc
PCB 118
PCB 138
PCB 153
PCB 180 7 markers PCBs
$6587 \quad 7569100 \quad 8965675266$
$\begin{array}{lllllll}88 & 89 & 85 & 71 & 54 & 79 & 87 \\ 89 & 88\end{array}$
$908690 \quad 7881857584$
$\begin{array}{lll}91 & 79 & 6475807780\end{array}$
$73 \quad 5971757476$
8869725871
73725671
978696
9299
95
$n s:$ not significative correlation ($p>0,05$)

