Synthesis and characterization of polychlorinated naphthalenes. VI. PCNs 39, 41, 60, 61 and 62

Vladimir A Nikiforov¹

¹St.petersburg State University, Dept. Of Chemistry

Introduction

In a series of presentations at DIOXIN symposia we have reported synthesis and characterization of a large number of polychloronaphthalenes¹⁻⁵. By the end of the last century only 10 congeners remained unknown or inadequately characterized – PCNs 2, 29, 39, 41, 45, 51, 58, 60, 61, 62. In particular, no melting point was reported for these 10 congeners, except PCN 2. This congener (2-chloronaphthalene) is the only liquid at ambient temperatures, with reported melting point from -17 $^{\circ}$ C to -2.3 $^{\circ}$ C.

Our research is directed towards synthesis of all 75 PCN congeners and present work describes synthesis and properties of the following congeners

PCN 39 - 1,2,6,7-TeCN

PCN 41 – 1,2,7,8-TeCN

PCN 60 - 1,2,4,6,7-PeCN

PCN 61 - 1,2,4,6,8-PeCN

PCN 62 - 1,2,4,7,8-PeCN

Materials and Methods

Starting PCN congeners were previously synthesized in our laboratory ¹⁻⁶. Nitration was carried out with equivalent amount of NO₂BF₄ in sulfolane at ambient temperature ^{1,4}. Chlorosulfonation was carried out in excess of neat HSO₃Cl. Substitution of nitro- and chlorosulfonyl groups was achieved in boiling C₅Cl₆^{4,7}. For hydrodechlorination Cu in boiling acetic acid was employed ^{5,6}.

Nitro-PCNs and PCN-sulfonylchlorides were purified by crystallization from ethanol. PCNs were purified by chromatography on silicagel column with hexane as eluent; then crystallized from MeOH/CH₂Cl₂. All chemicals and reagents were used as received.

Course of reactions, separations and purifications and purities of products were controlled by GC/ECD. GC conditions were as follows : GC-Varian3700, inj. – Gerstel split/splitless at 250° C, column – DB-5(app. 50m), Det. – ECD(at 300° C), carrier gas – nitrogen, make-up – nitrogen. Pr.: 160° C(2 min) - 20° C/min - 280° C(10 min) Purge 1.00-1.90 min. Structures were established by NMR.

Results and Discussion

Structures of "missing" PCN congeners are given below (Fig. 1). Interestingly, one mono-CN, four tetraCNs and 5 penta-CNs have not been either reported at all or incompletely characterized by the beginning of our century.

EMG - Polychlorinated Naphthalenes

Figure 1. Structures of unknown or incompletely characterized PCN congeners. In brackets – PCN numbers.

Five of the ten missing congeners were prepared according to the scheme on Fig. 2.

For confirmation purposes 1,2,4,5,7-PeCN(III) was also obtained by alternative synthetic route - as intermediate by reduction of 1,2,4,5,7,8-HxCN with Zn^{5,6}.

1,2,4,6,7-PeCN(VI) was similarly prepared in minuscule amount from 1,2,3,5,7,8-HxCN⁶.

Nitration of 1,2,4,7-TeCN(IV) gave a mixture of products, two were isolated in pure state by chromatography on silicagel with hexane as eluent – 3-nitro-1,2,4,7-TeCN(VII) and 8-nitro-1,2,4,7-TeCN(VIII). The latter was converted to 1,2,4,7,8-PeCN(IX). This compound was also obtained by alternative route XIII \rightarrow X \rightarrow XI \rightarrow XI \rightarrow IX.

Hydrodechlorination of 1,2,3,7,8-PeCN(**XIV**) with Zn yields target 1,2,6,7-TeCN(**XV**), ca. 80% and side product 1,2,3,7-TeCN, ca 20% 5,6 . The mixture was separated on silicagel with hexane as eluent.

Melting points, GC retention times and ¹H NMR chemical shifts are summarized in Table 1.

Figure 2. Synthesis of 1,2,6,7-TeCN(XV), 1,2,7,8-TeCN(XI), 1,2,4,6,7-PeCN(VI), 1,2,4,6,8-PeCN(III) and 1,2,4,7,8-PeCN(IX).

Table 1. Melting points, GC retention times(RT) and ${}^{1}H$ NMR chemical shifts of PCNs and related compounds (compound numbers – Fig. 2)

Compound	RT	Melting	¹ H NMR chemical shifts, d(ppm)							
number		point	H-2	H-3	H-4	H-5	H-6	H-7	H-8	
I	6.52,2	176	7.63d	-	8.14d	-	7.63d	-	8.14d	
III	8.30,4	155.5	-	4.76s	-	8.26d	-	7.74d	-	
IV	7.08,3	143	-	7.64s	-	8.18d	7.59dd	-	8.29d	
V	-	-	-	7.83s	-	9.10s	-	-	8.56s	
VI	8.18,1	130.2	-	7.66s	-	8.41s	-	-	8.35s	
VII	-	-	-	-	-	8.31d	7.74dd	-	8.36d	
VIII	9.32,8	109	-	7.83s	-	8.41d	7.71d	-	-	
IX	8.49,6	103.4	-	7.75s	-	8.20d	7.69d	-	-	
Х	10.26,8	256	-	7.75d	8.05d	8.05d	7.75d	-	-	
XI	8.07,2	128.1	-	7.60d	7.68d	7.68d	7.60d	-	-	
XII	9.33,0	-								

1	N/IN/	0.40 -	4.4-	·						
	XIV	9.18,7	117	-	-	/.8/s	7.59s	7.59s	-	-
	XV	7.36,8	156.9	-	7.53d	7.61d	7.94s	-	-	8.39s

Thus we have half-finished the remaining work on synthesis and characterization of all 75 PCN congeners. Synthesis of 1,2,3,6-TeCN, 1,3,6,8-TeCN, 1,2,3,5,6-PeCN and 1,2,4,5,7-PeCN is in progress.

Acknowledgement

Prof. Jaakko Paasivirta is gratefully acknowledged for encouragement to this work.

References

1. Nikiforov V.A., Auger P., Wightman R.H., Malaiyandi M., Williams D.T. (1992) Organohalogen Compounds, 8: 123-124.

2. Nikiforov V.A., Karavan V.S., Miltsov S.A., Tribulovich V.G. (1993) Organohalogen Compounds, 14: 229-230.

3. Nikiforov V.A., Miltsov S.A., Karavan V.S., Tribulovich V.G., Vlasov S.V., Wightman R.H. (1994) Organohalogen Compounds, 19: 137-138.

4. Nikiforov V.A., Karavan V.S., Miltsov S.A., Tribulovich V.G. (1998) Organohalogen Compounds, 35: 159-162.

5. Vladimir A. Nikiforov, Sergei A. Miltsov, Vladimir S. Karavan and V.V. Varentsov (2000) Organohalogen Compounds, 47: 171-173.

6. S. Miltsov, V. Karavan, V. Nikiforov, V. Tribulovich, V. Varentsov (1999) Zh. Org. Khim. (rus):724-727.

7. V. Nikiforov, R. Wightman (1997) Chimia 51: 452.