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Introduction

Polychlorinated naphthalenes (PCNs) are ubiquitous pollutants which exhibit significant toxicity and diverse physical-
chemical properties determining their environmental fate and distribution in various compartments -4 Depending on
values of partition coefficients, subcooled liquid vapor pressure, water solubility and some other parameters
chloronaphthalene (CN) congeners are long-range transported in the atmosphere 58 Based on that phenomena the

multicompartmental models of environmental transport and fate of PCNs could be constructed 910 Nevertheless, to
predict their environmental behavior the properties mentioned should be determined for each of 75 CN congeners.

A simple and cost-effective strategy, compared to the robust experimental study, is the computational estimation of
the properties by employment of available published laboratory data and novel numerical techniques. Implementation
of QSPR (Quantitative Structure-Property Relationships) technique enables predictions based on the molecular
information encrypted by means of the structural descriptors, i.e. quantum-chemical descriptors, topological
descriptors, shape descriptors and others 11-16 The QSPR approach uses many of chemometrical methods such as
simple and multiple regression, component regression, and artificial intelligence techniques such as neural networks

and genetic algorithms 1719

The aim of this study was to evaluate the most commonly used six chemometrical methods in computational
estimation of the four key environmental physical-chemical properties of PCNs.

Materials and Methods

Initially a set of structural descriptors was computed for each of 75 CN congeners and based on the level of the

density functional theory using B3LYP hybrid functional and 6-311++G** basis set 20 In the second step, published
experimental data on common logarithm of n-octanol/air partition coefficient (log Kg4), logarithm of n-octanol/water

partition coefficient (log Kgy), subcooled liquid vapor pressure (log P;) and water solubility (log S,,) of

chloronaphthalenes were collected 221-23 Next, the QSPR models were constructed for each of the properties
separately by means of six chemometrical methods such as: simple regression method (SRM), principal component
regression (PCR), partial least square regression (PLS), partial least square regression with initial elimination of the
uninformative variables (UVE-PLS), partial least square regression with variable selection using a genetic algorithm
(GA-PLS), and neural networks with variable selection using a genetic algorithm (GA-NN). For each property, a set
of congeners for which experimental data are available was divided into training and validation subsets. Each model
was developed using the same training set and each validated using the same validation set allowing quantitative
comparison of the models. The models were compared taking into account the predictive ability of the model,
measured by means of the root mean square error of prediction (RMSEP) for the validation set, and the complexity
of the model, expressed as the number of independent variables (descriptors) used.

Results and Discussion
The main two parameters which characterize the models are presented in Table 1 and Table 2.

Table 1. Predictive ability of the models (value of RMSEP)

Method Parameter
LogKpp Log Kow Log P Log S
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SRM 0.273 0.317 0.192 0.260
PCR 0.150 0.216 0.200 0.205
PLS 0.140 0.176 0.289 0.202
UVE-PLS 0.132 0.162 0.132 0.204
GA-PLS 0.106 0.146 0.108 0.222
GA-NN 0.091 0.065 0.078 0.155
Table 2. Complexity of the models (number of independent variables)
Method Parameter
Log Kpa Log Kow Log P, Log Sy,

SRM 1 1 1 1

PCR 33 33 26 33

PLS 33 33 26 33

UVE-PLS 20 5 13 29

GA-PLS 9 8 8 7

GA-NN 6 12 17 6

Usually (except for log P|), the models obtained by means of SRM were characterized by the highest values of

RMSEP. The methods based on factor regression (PCR and PLS) shown similar predictive ability, while PLS gave
not much lower values of the prediction error than PCR. An implementation of algorithms that reduce the number of
independent variables, such as UVE and GA, in PLS significantly improved the results. It is worthy to note, that
usually use of GA-PLS leads to better model (lower RMSEP), than UVE-PLS. In all cases, neural networks with
variable selection by means of a genetic algorithm (GA-NN) gave the lowest error of prediction.

By definition, the SRM models are characterized by the lowest complexity. The commonly used QSPR methods such
as PCR and PLS require a large number of descriptors, and what generates additional time and costs of
computation. Use of the techniques, which eliminate uninformative variables in the initial step (UVE-PLS and GA-
PLS), results both in decrease of complexity and usually increase the predictive ability of the model. In contrast to
UVE, implementation of GA leads to models based on lower number of independent variables (except log Kqy).

The optimal number of variables and the lowest error of prediction was for the models obtained from GA-NN,
suggesting this method as the most practical and useful for the novel computational prediction of physical-chemical
properties of chloronaphthalenes.
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