APPLICATION OF SOLVENT CUT LARGE VOLUME (SCLV) INJECTION SYSTEM USING NARROW-BORE COLUMN TO DIOXINS ANALYSIS IN HUMAN BLOOD

KAZUHIRO TOBIISHI¹, Takashi Todaka², Hironori Hirakawa¹, Tsuguhide Hori¹, Takao lida¹

¹Fukuoka Institute of Health and Environmental Sciences, Fukuoka ²Japan Food Hygiene Association, Tokyo

Introduction

An SCLV injection system has been developed as a quantitative technique on the scale of a few femtograms per microlitre.^{1,2} It is advantageous in that it allows a large volume injection without GC injector modification, and it can be carried out under high vacuum because of its narrow-bore column. This system should therefore contribute to improving column noise level and resolution. There has been a few information regarding different types of capillary columns and analytical conditions.

We presented comparison of the SCLV injection system with the conventional technique for analyzing dioxins by HRGC-HRMS using cyanopropyl phase capillary columns.^{3,4} We reported on the new protocol of dioxins analysis in human blood using SCLV injection system.⁵ We also reported on improvement of the SCLV injection system using narrower-bore column.⁶ In this paper, we apply an SCLV injection system using narrow-bore column to dioxins analysis in human blood.

Methods and Materials

HRGC-HRMS Measurement: All HRGC-HRMS analysis was conducted on a 6890 series GC (Agilent Technology, USA) equipped with Autospec-Ultima NT (Micromass, UK). The SCLV injection system (SGE, Australia) was equipped with a BPX-Dioxin-II ($3m \times 0.15mm$) capillary column (SGE, Australia) as the pre-column and a BPX-5 ($10m \times 0.1mm \times 0.1\mu m$) narrow-bore capillary column (SGE, Australia) as the analytical column. For the conventional SCLV injection system, a BPX-5 ($6m \times 0.25mm \times 0.25\mu m$) capillary column (SGE, Australia) as the pre-column (SGE, Australia) as the pre-column and a BPX-Dioxin-I ($30m \times 0.15mm$) capillary column (SGE, Australia) as the analytical column were used. The analytical conditions for the SCLV injection system are shown in Table 1. Perfluorotributylamine (PFTBA) was used for lock-mass system under the measurement of narrow-bore capillary column system.

Sample: In order to confirm the conditions of the equipment, five microlitre of standard (0.2ng/mL, 2,3,7,8-substituted PCDDs and PCDFs mixture) in nonane was injected. And then, five grams of control serum sample was used for the analysis of human blood. The details of the clean-up method for human blood were described in another paper.⁵

	(A)	(B)	
Pre-column	BPX-Dioxin-II (3m×0.15mm)	BPX-5 (6m×0.25mm×0.25µm)	
Analytical column	BPX-5 (10m×0.1mm×0.1µm)	BPX-Dioxin-I (30m×0.15mm)	
Purge on time	5 min		
Injector temperature	280°C		
Oven	$160^{\circ}C(4min) \rightarrow 20^{\circ}C/min \rightarrow$	$160^{\circ}C(3min) \rightarrow 20^{\circ}C/min \rightarrow$	
temperature	$280^{\circ}C(8.5min) \rightarrow 70^{\circ}C/min \rightarrow$	$300^{\circ}C(8min) \rightarrow 60^{\circ}C/min \rightarrow$	
	210°C (0.5min)→10°C/min→	210°C (0.5min)→3°C/min→	
	280°C (1.5min)	300°C (1min)	
Injector	688kPa (4min)→2kPa/min→	469kPa (3min)→418kPa/min→	
pressure	689kPa (14min)→249kPa/min→	678kPa (14.5min)→338kPa/min→	
	440kPa (0.5min)→8kPa/min→	340kPa (1min)→3.4kPa/min→	
	496kPa (1.5min)	442kPa (1min)	
Cold trap	3.5-20 min cooling	2.5-20 min cooling	
Solvent cut	4-18.5 min solvent cut: off	3-18 min solvent cut: off	
MS Resolution	>10000		
Channels	5-11		
Cycle time	188-374 ms	310-610 ms	
Analysis time	28.5 min	57.0 min	

Table 1 Analytica	conditions for the	SCLV injection system
-------------------	--------------------	-----------------------

Results and Discussion

HRGC-HRMS Measurement: The peak width of 2,3,7,8-TeCDD in the chromatogram for the narrow-bore capillary column system was about 3 seconds, while that for the conventional column system was about 10 seconds. It is considered that the cycle time per scan must be set shorter in the narrow-bore capillary column system than in the conventional column system. So, the cycle time was set 188-374ms by decreasing the monitor and delay time. All PCDD/F analytes were eluted within about 28.5 minutes with the narrow-bore capillary column system. We expect that the measurement using PFTBA contribute for decreasing the noise level but the differences could not be observed.

Comparison of Chromatograms: Chromatograms of the dioxin standard were compared between the narrow-bore capillary column system and the conventional column system. The chromatograms of TeCDD are presented in Figure 1; (A) stands for the use of the 10m×0.1mm column, and (B) for

GAS CHROMATOGRAPHY MASS SPECTROMETRY

the use of the $30m \times 0.15$ mm column. From this comparison, the resolution of the chromatograms obtained using the narrow-bore capillary column system was slightly lower than that of the conventional column system. The signal level from two systems is equal but the noise level from the narrow-bore capillary column system is higher than that from the conventional column system. We have a plan to compare with the column of different length and type.

Measurement of dioxins standard: Five microlitre of dioxins standard (0.2ng/mL) was injected seven times. Table 2 summarizes the retention time, average of amount, standard deviation and relative standard deviation (rsd%). Average of amount agreed on 1.0pg very well. The data of rsd% among the injections agreed by 1.60-6.77%. From these results, it is concluded that the narrow-bore capillary column system is effective for determining low-level dioxins.

Measurement of human blood: Concentrations of dioxins in control serum sample were measured using the narrow-bore capillary column system and the conventional column system. Table 3 summarizes the comparison of dioxins concentrations using the two systems. This comparison demonstrates agreement between the two systems.

(A) Narrow-bore capillary column system, (B) Conventional column system

	Retention time	Average (pg)	Std	Rsd%
344'5-TeCB(#81)	22.42	0.998	0.0217	2.17
33'44'-TeCB(#77)	22.52	1.00	0.0361	3.61
33'44'5-PeCB(#126)	23.35	0.998	0.0494	4.95
33'44'55'-HxCB(#169)	24.28	1.00	0.0455	4.55
2378-TeCDD	23.28	1.00	0.0542	5.42
12378-PeCDD	24.32	1.00	0.0626	6.25
123478-HxCDD	25.37	1.00	0.0677	6.77
123678-HxCDD	25.42	1.00	0.0568	5.67
123789-HxCDD	25.51	1.00	0.0751	7.50
1234678-HpCDD	26.56	1.00	0.0588	5.88
OCDD	27.75	1.00	0.0676	6.76
2378-TeCDF	23.17	1.00	0.0347	3.47
12378-PeCDF	24.01	0.999	0.0160	1.60
23478-PeCDF	24.28	1.00	0.0322	3.22
123478-HxCDF	25.09	0.999	0.0384	3.85
123678-HxCDF	25.14	0.999	0.0168	1.69
234678-HxCDF	25.35	1.00	0.0439	4.39
123789-HxCDF	25.65	1.00	0.0290	2.90
1234678-HpCDF	26.13	1.00	0.0266	2.66
1234789-HpCDF	26.77	1.00	0.0171	1.71
OCDF	27.83	0.998	0.0343	3.43

Table 2 Measurement of dioxins standard using narrow-bore capillary column system

	(pg/g-lipid)		
	narrow-bore capillary	Conventional	
	column system	column system	
344'5-TeCB(#81)	nd	nd	
33'44'-TeCB(#77)	63	47	
33'44'5-PeCB(#126)	25	23	
33'44'55'-HxCB(#169)	22	23	
2378-TeCDD	nd	1.9	
12378-PeCDD	9.4	5.9	
123478-HxCDD	7.1	6.6	
123678-HxCDD	44	53	
123789-HxCDD	9.2	10	
1234678-HpCDD	130	130	
OCDD	2200	1900	
2378-TeCDF	nd	nd	
12378-PeCDF	nd	nd	
23478-PeCDF	9.4	6.4	
123478-HxCDF	7.9	7.7	
123678-HxCDF	10	7.7	
234678-HxCDF	3.6	2.1	
123789-HxCDF	nd	nd	
1234678-HpCDF	17	19	
1234789-HpCDF	nd	nd	
OCDF	nd	nd	

Table 3 Comparison of concentrations of dioxins in control serum sample (pg/g-lipid)

Acknowledgements

The authors wish to thank Mr. Tatsuya Ezaki and Mr. Hiromasa Fujii at SGE Japan for their technical information and valuable discussions in producing this paper.

References

- 1 Masuzaki Y., Matsumura T., Ezaki T., Ohashi M., Morita M. (2001) Organohalogen Compounds, 50, 194.
- 2 Ezaki T., Masuzaki Y., Matsumura T., Ohashi M., Ito H., Morita M. (2001) Organohalogen Compounds, 50, 190.
- 3 Tobiishi K., Hori T., Kurokawa Y., Ishiguro Y. and Iida T. (2002) Organohalogen Compounds, 55, 179.
- 4 Hori T., Tobiishi K., Ashizuka Y., Nakagawa R. and Iida T. (2002) Organohalogen Compounds, 55, 95.
- 5 Todaka T., Hirakawa H., Tobiishi K. and Iida T. (2003) Fukuoka Acta Med., 94, 148.
- 6 Tobiishi K., Hori T., Ishiguro Y. and Iida T. (2003) Organohalogen Compounds, 60, 383.