Measurement of Selected Halogenated Contaminants in Human Serum and Milk using GCxGC-IDTOFMS

Jef Focant ${ }^{1}$, Andreas Sjödin ${ }^{2}$, Wayman Turner ${ }^{2}$, Don Patterson, Jr. ${ }^{2}$
${ }^{1}$ University of Liège
${ }^{2}$ Centers for Disease Control and Prevention, Atlanta, GA

INTRODUCTION

A new method using comprehensive two-dimensional gas chromatography and isotope dilution time-of-flight mass spectrometry (GCxGC-IDTOFMS) for the simultaneous measurement of selected polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and brominated flame retardants (BFRs) is presented. Conversely to reference methods based on classical GC-MS, a single injection of the extract containing all species of interest conducts to accurate identification and quantification. GCxGC ensures the chromatographic separation of most compounds and TOFMS allows mass spectral deconvolution of co-eluting compounds as well as the use of ${ }^{13} \mathrm{C}$ labeled internal standards for quantification. Isotope ratio measurements of the most intense ions for both natives and labels ensure the required specificity. Potentially interfering matrix compounds are usually kept away from the compounds to be measured in the chromatographic space. The use of this new method with automated sample preparation procedures developed at the Centers for Disease Control and Prevention (CDC) for the analysis of human serum and milk [1,2] compared favorably to conventional isotope-dilution one-dimensional gas chromatography-high resolution mass spectrometry (GC-IDHRMS) for the different sample pools that were tested

EXPERIMENTAL

Standards, Chemicals and Supplies. All standard solutions were purchased from Cambridge Isotope Laboratories (Andover, MS, USA). The EC-5022 PCB 10-points calibration standard solution contained a mixture of 38 native PCBs spanning the concentration range 0.5 to $1000 \mathrm{pg} / \mu \mathrm{L}$ and ${ }^{13} \mathrm{C}_{12}$-labeled PCBs at a concentration of $75 \mathrm{pg} / \mu \mathrm{L}$ in nonane. The EC- $5087{ }^{13} \mathrm{C}_{12}$-labeled PCB internal standard spiking solution contained ${ }^{13} \mathrm{C}_{12}$-labeled PCBs at a concentration of $7.5 \mathrm{pg} / \mu \mathrm{L}$ in methanol. The EO-5159 BFR 10-points calibration standard solution contained a mixture of native, spanning the concentration range 0.2 to $2000 \mathrm{pg} / \mu \mathrm{L}$, and ${ }^{13} \mathrm{C}_{12}$-labeled analytes, at a concentration of $75 \mathrm{pg} / \mu \mathrm{L}$. The EO-5158 ${ }^{13} \mathrm{C}_{12}$-labeled BFR internal standard spiking solution ${ }^{13} \mathrm{C}_{12}$-labeled compounds at a concentration of $7.5 \mathrm{pg} / \mu \mathrm{L}$ in methanol. The ES-5019 persistent OCP 8-points calibration standard solution contained a mixture of native and ${ }^{13} \mathrm{C}$-labeled analytes. Natives were in the concentration range of 5 to $1000 \mathrm{pg} / \mu \mathrm{L}$, and ${ }^{13} \mathrm{C}_{\mathrm{n}}$-labeled at a concentration of 100 or 250 $\mathrm{pg} / \mu \mathrm{L}$. The ES-5177 ${ }^{13} \mathrm{C}_{\mathrm{n}}$ - labeled OCP internal standard spiking solution contained ($10 \mathrm{pg} / \mu \mathrm{L}$ in methanol) was used. We prepared the multi-analyte calibration solution (59 native compounds) by combining equal volumes of the EC-5022, EO-5159, and ES-5019 solutions. All details concerning consumables, as well as the glassware pre-cleaning are available elsewere [1,2].

Samples. Human serum samples corresponded to a pool collected from 15 individuals in 2002 in 3 U.S. cities (Philadelphia, PA; Memphis, TN; Miami, FL) and obtained from the Menphis, TN Interstate blood bank. A mixture of water (3.5 mL) and calf serum (0.5 mL) (Bibco BRL; Grand Island, NY) was used as serum blank. Three human milk pools were analyzed. Pool A was obtained from the Mothers' milk bank (Denver, CO) and was a composite pool of 2 individuals collected in 2002, pool B and C both corresponded to 10 specimens collected in 2003 in California and in North-Carolina, respectively. A 10 -fold water diluted bovine milk obtained in a local supermarket was used as method blank samples.

Extraction and Cleanup. A semi-automated extraction and cleanup method recently developed at CDC for the measurement of the PCBs, OCPs, and BFRs in human serum and milk has been used and is described in details elsewere [1-3].

GC-IDHRMS analysis. They were performed on a MAT95XP instrument (ThermoFinnigan MAT, Bremen, Germany) interfaced with a 6890N gas chromatograph (Agilent Technologies, Atlanta, GA) fitted with a 15 m x 0.25 mm i.d. x $0.10 \mu \mathrm{~m}$ film thickness DB-5HT capillary column (J\&W Scientific, Folsom, CA). Details of the GC-IDHRMS analyses are given elsewhere [1].

GCxGC-IDTOFMS analysis. The GCxGC-TOFMS instrument was the Pegasus 4D (Leco Corp., St Joseph, MI). This system was based on a non-moving quadruple jet dual stage modulator made of two cold nitrogen jets and two pulsed hot air jets responsible for trapping and refocusing of compounds eluting from the ${ }^{1}$ D column. This modulator was mounted in an Agilent 6890 GC oven and liquid nitrogen was used to create the cold jets. Details regarding the system have been reported elsewhere [4,5]. The GC inlet temperature was $280^{\circ} \mathrm{C}$ for $1.2 \mu \mathrm{~L}$ splitless injections. Carrier gas was helium and a constant flow of $0.8 \mathrm{~mL} / \mathrm{min}$ was used. The GC column set used was made of the combination of a $15 \mathrm{~m} \times 0.25 \mathrm{~mm}$ i.d. DB-1 100% dimethylpolysiloxane (J\&W Scientific) with a film thickness of $0.25 \mu \mathrm{~m}$ as ${ }^{1} \mathrm{D}$ and a 1.2 mx 0.10 mm i.d. high temperature HT8 (8\% Phenyl)-polycarborane-siloxane (SGE, Austin, TX) with a film thickness of $0.10 \mu \mathrm{~m}$ as ${ }^{2} \mathrm{D}$. Deactivated universal presstight connectors (Restek Corp., Bellefonte, PA) were used for connecting the capillary columns. During chromatographic separation, the primary GC oven was programmed as follows: $90^{\circ} \mathrm{C}$ for 1 min , then to $150^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$, and finally to $300^{\circ} \mathrm{C}$ at $1^{\circ} \mathrm{C} / \mathrm{min}$. The ${ }^{2} \mathrm{D}$ column was was $40^{\circ} \mathrm{C}$ higher than the primary oven and operated in the isoramping mode. The temperature of the modulator had an offset of $60^{\circ} \mathrm{C}$ compared to the temperature of the primary GC oven. The modulator period was 3 s (0.33 Hz modulation frequency) with a hot pulse duration set at 700 ms and a cool time between stages of 800 ms . The MS transfer line was at $250^{\circ} \mathrm{C}$. The source temperature was $250^{\circ} \mathrm{C}$ with a filament bias voltage of 70 V . The data acquisition rate was 60 spectra/s for a collected mass range of 100 to $750 \mathrm{~m} / \mathrm{z}$. Table 1 lists the masses selected for quantification. The detector voltage was 1800 V . Data collection and processing were achieved using the 2.10 version of Leco ChromaTOF ${ }^{\mathrm{TM}}$ software provided with the instrument. Peak apex finding was performed automatically and further manually corrected when required. The combination of slices corresponding to a compound was performed by automatically comparing the mass spectra under pre-established match criteria. Spectral searching was performed using the NIST library available with the software, as well as through the custom built ${ }^{13} \mathrm{C}$-labeled compound library.

ADVANCES IN ANALYSIS OF DIOXIN AND DIOXIN-LIKE COMPOUNDS

RESULTS AND DISCUSSION

The last compound (BDE-154) eluted after 45 min (analytical speed of 1.3 analytes $/ \mathrm{min}$). Most of the compounds were chromatographically resolved from each other. Heptachlor epoxide and Tetra-CB-74, as well as Hepta-CB-189 and Octa-CB-196 were two co-eluting couples that required the use of the deconvolution capability to be resolved. Figure 1 shows chromatograms of a multianalyte standard solution and a real sample extract. The calibration curve covered 3 orders of magnitude with instrument LODs of $1 \mathrm{pg} / \mu \mathrm{L}$ injected ($\mathrm{S} / \mathrm{N}>3$ for the base peak). An example of quantification is shown in Figure 2 for Mirex and hepta-CB-170. It appeared to be important to carry out the quantification on the entire set of slices corresponding to one analyte. The ratio between corresponding native and ${ }^{13} \mathrm{C}$-label slices varies over the peak cluster. As illustrated in Table 2, the ratio between native and ${ }^{13} \mathrm{C}$-label was calculated after the summation of the area of all combined slices.

Human serum QC samples were used to build up QC charts for both GC-IDHRMS and GCxGCIDTOFMS methods for all investigated analytes. Figure 3 illustrates the case of DBE-47, DBE-100 and CB-153. The SD values are higher with GCxGC-IDTOFMS partly because several slices of different intensities had to be integrated and also due to the low mass resolution of the TOFMS. Finally, OCP (Figure 4) and BDE (Table 3) data are shown for human serum and milk samples, respectively.

Table 1. List of masses used to reconstruct deconvoluted ion currents (DICs) during the GCxGC-IDTOFMS quantification process

	Compounds	${ }^{12} \mathrm{C}-$ native ions $(\mathrm{m} / \mathrm{z})$	
PCBs	Tri-CBs	$186+188+256+258+260$	${ }^{13} \mathrm{C}$-labeled ions $(\mathrm{m} / \mathrm{z})$
	Tera-CBs	$220+222+255+257+290+292+294$	$198+200+268+270+272$
	Penta-CBs	$254+256+291+324+326+328$	$232+234+267+268+302+304+306$
	Hexa-CBs	$288+290+292+358+360+362$	$266+268+303+336+338+340$
	Hepta-CBs	$322+324+326+394+396+398$	$300+302+304+370+372+374$
	Octa-CBs	$356+358+360+362+426+428+430+432$	$334+336+338+406+408+410$
	Nona-CBs	$390+392+394+396+398+460+462+464+466+468$	$402+370+372+374+438+440+442+444$
	Deca-CBs	$424+426+428+430+432+494+496+498+500+502$	$436+438+440+442+444+506+508+510+512+514$
OCPs	HCB	$247+249+251+282+284+286$	$253+255+257+288+290+292$
	$\beta-$ and γ-HCCH	$217+219+221+252+254+256+288+290+292$	$223+225+227+258+260+262+294+296+298$
	Heptachlor epoxide	$351+353+355+357+388+390$	$361+363+365+367+398+400$
	Oxychlordane	$385+387+389+391+422+424+426$	$395+397+399+401+432+434+436$
	trans - Nonachlor	$407+409+411+413+442+444+446+448$	$417+419+421+423+452+454+456+458$
	Dieldrin	$261+263+265+343+345+347+378+380+382$	$275+277+279+355+357+359+390+390+394$
	$o, p^{\prime}-$ and $p, p^{\prime}-$ DDT	$235+237+239$	$247+249+251$
	Mirex	$235+237+239+241+270+272+274+276$	$240+242+244+246+275+277+279+281$
	$p, p^{\prime}-$-DDE	$246+248+250+316+318+320$	$258+260+262+328+330+332$
PBDEs	Tri-BDEs	$246+248+404+406+408+410$	$258+260+416+418+420+422$
	Tetra-BDEs	$324+326+328+482+484+486+488+490$	$336+338+340+494+496+498+500+502$
	Penta-BDEs	$402+404+406+408+562+564+566+568$	$414+416+418+420+574+576+578+580$
	Hexa-BDEs	$480+482+484+486+640+642+644+646+648$	$492+494+496+498+652+654+656+658+660$
	Hexa-BB	$466+468+470+545+547+549+624+626+628+630$	$476+478+480+557+559+561+636+638+640+642$

ACKNOWLEDGEMENTS

J.-F. Focant was financially supported by the Oak Ridge Institute for Science and Education (ORISE), a Department of Energy (DOE) facility managed by Oak Ridge Associated Universities (ORAU).

REFERENCES

[1] Sjödin, A.; Jones, R. S.; Lapeza Jr., C. R.; Focant, J.-F.; McGahee III, E. E.; Patterson Jr., D. G. Anal. Chem. 2004, 76, 1921-1927.
[2] Sjödin, A.; McGahee III, E.E.; Focant, J.-F.; Jones, R. S., Lapeza Jr., C. R.; Zhang, Y.; Patterson Jr., D. G. Anal. Chem. 2004, in press.
[3] Sandau, C. D.; Sjödin, A.; Davis, M. D.; Barr, J. R.; Maggio, V. L.; Waterman, A. L.; Preston, K. E.; Preau Jr, J. L.; Barr, D.; Needham, L. L.; Patterson Jr, D. G. Anal. Chem. 2003, 75, 71-77.
[4] Focant, J.-F.; Sjödin, A.; Patterson Jr., D. G. J. Chromatogr. A 2003, 1019, 143-156.
[5] Focant, J.-F.; Sjödin, A.; Patterson Jr., D. G. J. Chromatogr. A 2004, in press.

ADVANCES IN ANALYSIS OF DIOXIN AND DIOXIN-LIKE COMPOUNDS

Table 2. Variation in the native over ${ }^{13} \mathrm{C}$-label ratio for the different slices of a peak cluster

Compound	${ }^{1} \mathrm{t}_{\mathrm{R}}(\mathrm{S})$	${ }^{2} \mathrm{t}_{\mathrm{R}}(\mathrm{S})$	${ }^{13} \mathrm{C}$-Label		Native		Ratio ${ }^{\text {a }}$
			area	S/N	area	S/N	
BDE-99-1	2493	1.72	4755	22.00	786	4.00	0.17
BDE-99-2 ${ }^{\text {b }}$	2496	1.68	20523	102.00	4351	20.00	0.21
BDE-99-3 ${ }^{\text {c }}$	2499	1.71	18341	78.00	6335	26.00	0.35
BDE-99-4	2502	1.65	3940	21.00	2210	10.00	0.56
Sum	-		47559	-	13682	-	0.29

[^0]Table 3. Comparison between the new GCxGC-IDTOFMS and the reference GC-IDHRMS method for the measurement (ng / g lipids) of selected BDEs in natural human milk pools

Analyte	Pool A					Pool B					Pool C				
	$\begin{gathered} \text { GC-HRMS } \\ n=3 \end{gathered}$		$\begin{gathered} \text { GCxGC-TOFMS } \\ n=4 \\ \hline \end{gathered}$		Dev. ${ }^{\text {b }}$ (\%)	$\begin{gathered} \text { GC-HRMS } \\ n=3 \end{gathered}$		$\begin{gathered} \text { GCxGC-TOFMS } \\ n=4 \end{gathered}$		Dev. (\%)	$\begin{gathered} \hline \text { GC-HRMS } \\ \mathrm{n}=120 \\ \hline \end{gathered}$		$\begin{gathered} \text { GCxGC-TOFMS } \\ n=4 \end{gathered}$		Dev. (\%)
	Mean	SEM ${ }^{\text {a }}$	Mean	SEM		Mean	SEM	Mean	SEM		Mean	SEM	Mean	SEM	
BDE-28	6.6	0.6	7.7	0.2	15.3	12.7	0.9	11.7	1.0	8.3	2.9	0.1	4.0	0.5	41.0
BDE-47	230.4	8.2	227.4	17.4	1.3	284.5	14.0	308.3	24.4	8.4	64.0	2.8	65.7	0.4	2.6
BDE-100	46.1	1.7	49.4	0.9	7.3	45.6	2.2	53.9	3.7	18.3	11.4	0.6	11.4	0.7	0.3
BDE-99	71.6	2.9	76.7	1.6	7.1	74.0	2.6	81.7	6.4	10.4	19.3	0.7	19.7	0.6	1.9
BB-153	0.7	0.1	1.0	0.3	52.7	1.2	0.0	1.6	0.5	27.7	6.7	0.4	9.0	0.7	33.6
BDE-154	5.9	0.2	4.9	0.4	17.3	3.7	0.2	4.7	1.1	27.3	1.1	0.0	0.9	0.2	18.3
BDE-85	7.9	1.0	6.1	0.3	22.9	6.9	0.2	7.4	0.8	7.1	1.6	0.0	-	-	
BDE-153	18.5	1.4	18.6	0.3	0.7	21.4	0.9	25.8	5.4	20.4	9.2	0.4	9.8	0.9	6.1
£BDEs	386.9	36.5	390.8	16.2	1.0	448.8	20.9	493.5	39.0	9.9	109.5	4.7	111.5	2.1	1.8

${ }^{\text {a }}$ SEM, standard error of the mean. ${ }^{\mathrm{b}}$ Deviation between the 2 methods.

Figure 1. Contour plot for GCxGC-IDTOFMS TIC chromatogram of a $100 \mathrm{pg} / \mu \mathrm{L}$ native compound multi-analytes calibration solution (top) and a real human serum sample (bottom).

Figure 2. Region of the chromatogram of a real human serum sample (top) where Mirex and CB-170 elute. Extracted ion chromatograms are based on ions listed in Table 1 for those 2 compounds (native and labeled). Peaks are: (1) Mirex, (2) CB-170, (3) phthlalate, (4) siloxane bleed, (5) tetracosane. The dashed Gaussian shapes are artificial and are only shown to help to locate the elution windows of the 2 compounds. Expanded section (bottom) showing one of the slices illustrating chromatographic and mass spectral resolution of the 2 compounds and their corresponding ${ }^{13} \mathrm{C}$ labels (left) as well as the corresponding contour plots (right).

Figure 4. Comparison between GCxGC-IDTOFMS and the reference GC-IDHRMS for the measurement of OCPs in human serum samples.

Figure 3. QC charts for BDE-47 (A), BDE-100 (B), and CB-153 (C).

[^0]: ${ }^{a}$ Ratio of native over ${ }^{13} \mathrm{C}$-label. ${ }^{\mathrm{b}}$ Base peak for ${ }^{13} \mathrm{C}$-label. ${ }^{\mathrm{c}}$ Base peak for natives.

