The change in the chemical form of copper in fly ash in a suitable temperature region for de novo synthesis

Masaki Takaoka¹, Atsuhiro Shiono¹, Kohei Nishimura¹, Takashi Yamamoto², Tomoya Uruga³, Nobuo Takeda¹, Tsunehiro Tanaka⁴, Kazuyuki Oshita¹, Tadao Matsumoto¹, Hiroki Harada¹

¹Dept. of Urban & Environ. Eng., Kyoto University, Kyoto, Japan
²Chemical Resources Lab., Tokyo Institute of Technology, Yokohama, Japan
³JASRI, Hyogo, Japan
⁴Dept. of Molecular Eng., Kyoto University, Kyoto, Japan

Introduction

Copper chloride as an important catalyst generates many polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DFs) and related compounds in heat experiments involving model fly ash¹⁻⁴. We investigated the chemical forms of copper in actual fly ash before heating experiments and discuss the relationship that we discovered between the copper species $Cu(OH)_2$, CuO, and $Cu(OH)_2$ · $CuCO_3$ · H_2O and the formation of chlorinated aromatics in actual fly ash using X-ray absorption near-edge spectroscopy (XANES)⁵. Other results using model fly ash differ from ours¹⁻⁴. The thermal stabilities of these compounds are not high, so these compounds might not exist in fly ash in the temperature region suitable for *de novo* synthesis. Therefore, we conducted *in situ* XANES experiments using actual fly ash and two models of fly ash to understand the behavior of copper in fly ash in the temperature region suitable for *de novo* synthesis.

Materials and Methods

Actual fly ash was sampled from a bag filter with no lime and no activated carbon injection in a stoker-type municipal solid-waste incinerator (MSWI). The measured copper, chlorine, and total

organic carbon levels were 2600 mg/kg, 14%, and 1.5%, respectively. The detailed measurement procedures are presented elsewhere⁶. We prepared two kinds of model fly ash: a mixture of CuCl₂·2H₂O, activated carbon (AC), and boron nitride (BN); and a mixture of CuO, KCl, AC, and BN. Each model fly ash contained 1.8% Cu, 2.0% Cl, 5.0% AC, and almost all the remainder was BN. After grinding the fly ash using a mortar for 10 minutes, 200 mg was pressed into disks 13 mm in diameter.

The direct speciation of copper in fly ash was examined using XANES with an *in situ* cell, as shown in Fig. 1. XANES was performed using beamline BL01B1 in

Fig.1 In situ cell

SPring-8, a synchrotron radiation facility in Japan⁷, while a disk of fly ash was heated in the in situ cell. The heating procedure and atmospheric conditions are shown in Fig. 2. The spectra were collected in fluorescence mode using a 19-element Ge solid-state detector for actual fly ash disks and in transmission mode using an ionization chamber for model fly ash with an Si(111) monochromator. The data were analyzed using REX 2000 ver.2.3.3 (Rigaku co. Ltd.). A pattern-fitting analysis of the XANES spectra was conducted, which assumed that the unknown spectra were linear combinations of reference spectra in our library (Cu, Cu₂O, CuCl, CuO, CuCl₂·2H₂O, $CuCO_3 \cdot Cu(OH)_2 \cdot H_2O$, CuS, Cu(OH)₂, CuSO₄, CuFeO₄. $Cu_3(PO_4)_2 \cdot H_2O$ and $CuCl_2 \cdot 3Cu(OH)_2$). The Cu K edge XANES spectra of twelve of the reference materials are shown in Fig. 3. The residual value (R) calculated using Eq. (1) was used to evaluate the fit of the model predictions to the experimental data.

Fig.2 Heating procedure in in situ XAFS experiment

R: residual value
$$R = \frac{\sum (XANES_{Measured} - XANES_{Calculated})^2}{\sum (XANES_{Measured})^2} \times 100$$
 (1)

Results and Discussion The change in the chemical form of copper in actual fly ash

The change in the chemical form of copper in actual fly ash with heating is shown in Fig. 4 and Table 1. At room temperature, the XANES spectra indicated that the copper compounds consisted of 75% CuCl₂·3Cu(OH)₂, 14% CuCl. and 11% $Cu(OH)_2$. $CuCl_2$. $3Cu(OH)_2$ chloride is а copper hydroxide mineral that resembles CuCl₂·CuO in structure, and is thought to be a vital catalyst in the chlorination of ethylene⁸. CuCl₂·3Cu(OH)₂ is dehydrated to form CuCl₂·CuO when the temperature reaches ca. 270°C⁹.

of the reference materials

Fig.4 TheCu K edge XANES spectra in actual fly ash with heating

actual fly ash A; O ₂ 10%; rt 300°C 400°C 400°C+HCl										
	Cu	Cu ₂ O	CuO	CuCl	CuOH ₂	$CuCl_2 \cdot 3Cu(OH)_2$	R			
rt				14	11	75	0.014			
300°C	29	26		44			0.041			
400°C	20	19		61			0.019			
400°C+HCl	21	14	16	49			0.017			

Table1 The change in the chemical form of copper in
actual fly ash with heating

We detected $CuCl_2 \cdot 3Cu(OH)_2$ in the actual fly ash.

When the fly ash was heated to 300°C, the chemical forms of copper changed dramatically to 45% CuCl, 29% Cu, and 26% Cu₂O. We could not recognize CuCl₂·3Cu(OH)₂ in the heated fly ash. Heating fly ash to 300°C transformed the cupric compounds in the fly ash into cuprous compounds or elemental copper. This indicates that the atmosphere in fly ash increased to 400°C, the ratio of CuCl increased to 61% of the total Cu and the ratios of Cu and Cu₂O decreased to 20% each. Then, the atmosphere was changed from 10% O₂ (90% N₂) gas to 10% O₂ + HCl 1000 ppm (balance N₂) to observe the effect

of chlorination by HCl at 400°C. The ratios of CuCl and Cu₂O decreased to 49 and 14% of the total Cu, respectively, and CuO appeared. Oxidation of Cu⁺ compounds to CuO occurred rather than the chlorination of copper in fly ash by HCl. *In situ*

XANES showed that the chemical form of copper in fly ash depended on the temperature, and that cupric compounds at room temperature were transformed into cuprous compounds or elemental copper by heating.

To confirm the temperature at which the reaction starts, the same fly ash was heated from room temperature to 200°C. CuCl, Cu, and Cu₂O were found instead of cupric compounds at 200°C. When the temperature was increased to 300°C, the ratios of these copper compounds were the same as at 200°C. Therefore, the reduction of cupric compounds began at below 200°C, which suggests that fly ash can form dioxins or other chlorinated compounds at temperatures below 200°C, although the rates of the gasification and chlorination reactions of carbon are so slow that little dioxin is generated.

When the atmosphere contained 1000 ppm HCl, the ratio of CuCl increased and that of Cu_2O decreased. Although HCl did not influence the chlorination of copper in fly ash at 400°C, it might contribute to the chlorination of copper at 300°C.

The change in the chemical form of copper in model fly ash

Using the model fly ash, XANES spectra were measured at room temperature, 300°C, and 400°C, and at intermediate temperatures as the temperature increased. Note that the temperature at the beginning of these intermediate XANES spectra differs from that at the end, because it took 6.5 minutes to complete a measurement in the XANES region.

Fly ash model A (CuCl₂·2H₂O+AC+BN)

The change in the chemical form of copper in fly ash model A on heating is shown in Fig. 5 and Table 2. At room temperature, the copper compounds consisted of 77% CuCl₂·2H₂O and 23%

CuO. Therefore, some of the CuCl₂·2H₂O changed into CuO while we were grinding and pressing the model fly ash into a disk. During the first temperature increase, the CuO disappeared, while CuCl and Cu₂O appeared, and the ratio of CuCl₂·2H₂O did not change. Therefore, the CuO at room temperature is very unstable. In the second temperature increase, no CuCl₂·2H₂O was observed and CuCl was the predominant species, with 22% Cu₂O and 15% Cu. This means that the CuCl₂·2H₂O in this model fly ash is strongly reduced at low temperatures. This change in the chemical form of copper in fly ash model A agrees with that in actual fly ash.

Although there was some variation, at temperatures below 300° C CuCl made up 60% of the total Cu, while Cu₂O and Cu contributed 20% each. Therefore, copper compounds with a low valence, such as CuCl, play an important role in the formation of PCDDs/DFs, polychlorinated biphenyls (PCBs), and chlorinated benzenes (CBzs) in fly ash at temperatures near 300° C.

As the temperature increased to 400° C, the ratio of CuCl remained at about 60%, while the ratios of Cu₂O and Cu decreased and CuO appeared. At a constant temperature of 400° C, the ratio of CuCl decreased to 5.2%, whereas the ratio of CuO increased to 60% and was the main component. Note that although the starting material CuCl₂·2H₂O was not observed in the intermediate temperature region, it reappeared at 400° C.

Fig.5 TheCu K edge XANES spectra in fly ash model A on heating

We measured XANES spectra of this model fly ash

after cooling the in situ cell from 400°C to room temperature and dismantling the Low-valence cell. copper compounds vanished from the model fly ash, and CuCl₂·2H₂O and CuO accounted for 28 and 72% of the

Table2	The change in the chemical form of copper
	in fly ash model A on heating

No.	step	starting temp.	Cu_2O	$CuCl_2 \cdot 2H_2O$	CuCl	Cu	CuO	R
1	rt	35		77			23	0.011
2	rt 300°C 1st loop	41	11	78	11			0.023
3	rt 300°C 2nd loop	170	22		63	15		0.044
4	rt 300°C 3nd loop	306	26		54	20		0.053
5	rt 300°C 4th loop	298	24		54	22		0.053
6	300°C	298	20		58	22		0.045
7	300°C 400°C 1st loop	313	21		60	18		0.049
8	300°C 400°C 2nd loop	390	11		58	15	16	0.024
9	400°C	391		23	5.2	11	60	0.018
10	400°C rt(cooling)	-		28			73	0.027

total Cu, respectively.

In these measurements, low residual values (R) were obtained at room temperature and at 400°C, which meant that the spectra fits were adequate, although the residual values at 300°C were relatively high. Therefore, at 300°C, the model fly ash might contain unknown compounds that were not included in the references used. Alternatively, the very fast redox reaction in the model fly ash might distort the spectra at 300°C. We exposed the *in situ* cell for model fly ash A to air for 34 hr after measuring the final state of copper in the model fly ash in this experiment. We wanted to confirm whether the chemical form of copper remains in the final state at the end of the experiment or returns to the original forms before heating (*i.e.*, 77% CuCl₂·2H₂O and 23% CuO). We also wanted to check whether the same changes in chemical form occur on reheating at 300°C.

Cu K edge XANES spectra from this experiment are shown in Fig. 6 and Table 3. The spectrum after exposure to air for 34 hr differed from that measured immediately after the experiment and closely resembled the spectrum of CuCl₂·3Cu(OH)₂. If the only copper compounds in fly ash model A were CuCl₂·2H₂O and CuO, the ratio of CuCl₂·2H₂O to CuO was the same as in the final state of the initial experiment. However, the residual factor increased from 0.027 to 0.054. In other words, the chemical form of copper changed slightly on exposure to air for 34 hr. Consequently, we performed spectral fits with and without

Fig.6 TheCu K edge XANES spectra in fly ash model A on reheating

CuCl₂·3Cu(OH)₂. As the temperature increased to 300°C, the ratio of CuCl₂·3Cu(OH)₂ decreased remarkably to 10%. CuCl₂·2H₂O and CuO accounted for 30 and 60% of the total Cu, respectively, when considering the presence of CuCl₂·3Cu(OH)₂. The distribution did not change at 300°C. CuCl₂·2H₂O and CuO accounted for 30-34 and 66-71% of the total Cu in the spectra fit without CuCl₂·3Cu(OH)₂, The distribution of the spectra fit without CuCl₂·3Cu(OH)₂.

respectively. In both

cases, the chemical form of copper did not dramatically change compared with the final state in our experiment. When pure CuCl₂·2H₂O was used as the starting material, it was strongly reduced to Cu₂O and Cu at around 300°C. By contrast, no low-valence copper compounds were observed on reheating

Table3	The change in the chemical form of copper
	in fly ash model A on reheating

No.	step	starting temp.	$CuCl_2 \cdot 2H_2O$	CuO	$CuCl_2 \cdot 3Cu(OH)_2$	R
11	rt	35		14	86	0.021
12	rt 300°C 1st loop	41		18	82	0.015
13	rt 300°C 2nd loop	170	30	61	9.1	0.021
14	rt 300°C 3nd loop	306	29	63	9.1	0.022
15	rt 300°C 4th loop	298	29	61	10	0.023
16	300°C	298	26	62	12	0.025
17	rt	35	29	71		0.054
18	rt 300°C 1st loop	41	33	67		0.047
19	rt 300°C 2nd loop	170	34	66		0.022
20	rt 300°C 3nd loop	306	33	67		0.023
21	rt 300°C 4th loop	298	33	67		0.023
22	300°C	298	31	69		0.026

the model fly ash after the experiment. The same change in chemical form did not recur on reheating at 300°C. This occurred because the change in the composition of the model fly ash on heating at 400°C prevents the redox reaction of copper compounds from taking place.

Fly ash model B (CuO+AC+KCl+BN)

Cu K edge XANES spectra of fly ash model B are shown in Fig. 7 and Table 4. Spectra fits were also performed with and without CuCl₂·3Cu(OH)₂. At room temperature, the copper compounds were 95% CuO, 4% Cu₂O, and 1% CuCl₂·2H₂O. Although a small portion of CuO changed into Cu₂O and CuCl₂·2H₂O while we were grinding and pressing the model fly ash into a disk, CuO was more stable than CuCl₂·2H₂O. Assuming that CuCl₂·3Cu(OH)₂ was absent, the ratio of CuO decreased slightly from 95 to 88%, while the ratio of CuCl₂·2H₂O increased from 1 to 7% as the temperature rose from room temperature to 400°C. The ratio of CuO in the spectra fit with CuCl₂·3Cu(OH)₂ was just slightly lower than that without CuCl₂·3Cu(OH)₂, but showed the same tendency to decline. The ratio of CuCl₂·3Cu(OH)₂ rose from 7 to 11% with temperature. This indicates that the amount of CuO does not vary markedly in model fly ash in the temperature region suitable for de novo synthesis.

Fig.7 TheCu K edge XANES spectra in fly ash model B on heating

]	No.	step	starting temp.	Cu_2O	CuCl ₂ ·2H ₂ O	CuO	$CuCl_2 \cdot 3Cu(OH)_2$	R	Previously, we
	23	rt	35	3.1	1.2	96		0.009	indicated that
	24	rt 300°C 1st loop	41	0.7	3.0	96		0.008	CuO.
	25	rt 300°C 2nd loop	170	4.6	4.9	90		0.008	$Cu(OH)_{2}$ and
	26	rt 300°C 3nd loop	306	5.0	4.9	90		0.008	$Cu(OH)_2$, und
	27	rt 300°C 4th loop	298	3.3	5.8	91		0.005	$\Omega_{\rm eff}$
	28	300°C	300	3.8	5.4	91		0.007	
	29	300°C 400°C 1st loop	313	4.7	6.3	89		0.009	important than
	30	300°C 400°C 2nd loop	390	6.1	5.9	88		0.010	Important than
	31	400°C	390	4.8	6.6	89		0.008	CuCl and
	32	rt	35	4.2		89	6.9	0.008	$CuCl_2 \cdot 2H_2O$
	33	rt 300°C 1st loop	41	2.5		89	9.0	0.006	for <i>de novo</i>
	34	rt 300°C 2nd loop	170	6.8		84	9.3	0.007	synthesis in
	35	rt 300°C 3nd loop	306	7.1		84	9.0	0.007	MSWI fly ash.
	36	rt 300°C 4th loop	298	5.7		85	9.7	0.005	By contrast,
	37	300°C	300	6.0		85	9.3	0.007	the present
	38	300°C 400°C 1st loop	313	7.2		82	11	0.008	results suggest
	39	300°C 400°C 2nd loop	390	8.5		81	10	0.009	that CuCl and
	40	400°C	390	7.4		82	11	0.008	

Table4 The change in the chemical form of copper in fly ash model B on heating

 $CuCl_2 \cdot 2H_2O$ play a vital role in the formation of chlorinated aromatics. This discrepancy appears to result from newly considering $CuCl_2 \cdot 3Cu(OH)_2$, which resembles $CuCO_3 \cdot Cu(OH)_2 \cdot H_2O$ in shape, in the XANES spectrum. Moreover, the results suggest that it might be difficult to predict the chemical forms that will be seen in fly ash during heating from those present before heating.

Acknowledgements

The synchrotron radiation experiments were performed at the SPring-8 with approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No.2002B0370-NX-np & 2003B0215-Nxa-np). We greatly thanks the financial support by a Grand-in-Aid for Waste treatment Research from Ministry of the Environment, Japan (Proposal No.K1514).

References

1.Stieglitz L., Zwick G., Beck J., Roth W. and Vogg H. (1989)Chemosphere, 18, 1219-1226.

2.Luijk, R., Akkerman, D. M., Slot P., Olie K. and Kapteijn F. (1994) *Environ. Sci. Technol.* 28, 312-321.

3.Addink R. and Olie K, (1995) Environ. Sci. Technol. 29, 1425-1435.

4.Schoonenboom, M. H., Tromp, P. C. and Oile K. (1995) Chemosphere, 30, 1341-1349.

5. Takaoka M.et. al. (2003) Organohalogen Compounds, 63, 155-158

6. Takaoka M, Nakatsuka D., Takeda N. and Fujiwara T.(2000) *J. the Japan Soc. of Waste Manage. Experts.* 11, 333-342 (in Japanese).

7. Uruga T et. al., 1999., J. of Synchrotron Radiation. 6 143-145.

8.Lamberti C. et. al., 2002, Angew. Chem. Int. Ed., 41, 2341-2343

9.Sharkey J. B. and Lewin S.Z., 1972. Thermochim. Acta, 3, 189-201