Nuclear Magnetic Resonance and LC/MS Characterization of Native and New Mass-labeled Fluorinated Telomer Alcohols, Acids and Unsaturated Acids

Gilles Arsenault¹, Brock Chittim¹, David Ellis², Thor Halldorson³, Scott Mabury², Alan McAlees¹, Robert McCrindle⁴, Naomi Stock², Gregg Tomy³, Brian Yeo¹

¹Wellington Laboratories Inc., Guelph ²University of Toronto, Toronto ³Dept. of Fisheries and Oceans, Winnipeg ⁴University of Guelph, Guelph

Introduction

A variety of fluorinated compounds are used in a multitude of consumer products because of their ability to repel water and oil, resistance to heat, and chemical inertness. Recently, scientists and regulators have begun raising concerns about the potential health and environmental impact of perfluorinated compounds ¹⁻⁷. Exposure to perfluoroalkyl acids, such as Perfluorooctanoic acid (PFOA), has been identified⁸ as a potential human health concern. A study has shown⁹ that telomer alcohols such as 2-perfluorooctylethanol can be metabolized by living organisms or biodegrade under environmental conditions to sequentially give the saturated fluorinated telomer acid (2-perfluorooctylethanoic acid), then the unsaturated telomer acid (2H-Perfluorooct-2-enoic acid), and eventually PFOA.

Additional experimental work is necessary to determine the extent, if any, to which telomer product degradation may be a source of PFOA. The analysis for fluorinated compounds in environmental samples is performed, primarily, using LC/MS techniques. These analyses have been hindered by the lack of any commercially available mass-labeled fluorinated compounds for use as surrogates¹⁰ and thus may be restricting the amount of research conducted in this area.

We have now synthesized the mass-labeled perfluoroalkyl telomer alcohols and the corresponding acids and unsaturated acids. We report in this study their ¹H-, ²H-, ¹⁹F- and ¹³C-NMR characterizations along with GC/MS and LC/MS data and evaluation of their use as surrogate standards.

Methods and Materials

Chemicals. The fluorinated telomer compounds reported in this paper were synthesized and purified using conventional synthetic procedures. Abbreviations used for the fluorinated compounds are shown in Table 1.

Name	Abbreviation for the native	Abbreviation for the mass
	compound	labeled compound
2-Perfluorohexylethanol	FHET	MFHET
2-Perfluorooctylethanol	FOET	MFOET
2-Perfluorodecylethanol	FDET	MFDET
2-Perfluorohexylethanoic acid	FHEA	MFHEA
2-Perfluorooctylethanoic acid	FOEA	MFOEA
2-Perfluorodecylethanoic acid	FDEA	MFDEA
2H-Perfluorooct-2-enoic acid	FHUEA	MFHUEA
2H-Perfluorodec-2-enoic acid	FOUEA	MFOUEA
2H-Perfluorododec-2-enoic acid	FDUEA	MFDUEA

Table 1. Abbreviations used for the fluorinated telomer compounds.

NMR Experiments. The NMR experiments were performed on a Bruker 400MHz instrument.

Gas Chromatography / Mass Spectrometry. The analysis was carried out using a Shimadzu GCMS-QP2010. Temperature program used on column DB-5 (30m x 0.25mm x 0.25um): 30°C, 10 minutes isothermal; 10°C/min. to 325°C and hold for 15 minutes; splitless injector port set at 120°C; detector set at 250°C. Scan from 50 to 1000amu.

Liquid Chromatography / Mass Spectrometry. LC/MS were determined using an Alltech 426 pump and Micromass Quattro micro detector. The LC traces were obtained by injection of 20uL into an Alltech Econosil C18 column (250cm, 4.6 mm ID, 5 um pore size) and using a methanol/water (75:25) solvent system. The MS was running in single reaction monitoring mode with a cone angle of 14 V. The full mass spectra were obtained by direct 10uL injection to the MS running in full scan mode from 50 m/z to 650 m/z with a cone voltage of 14 V.

Results and Discussion

NMR for the Fluorinated Telomer Compounds. The NMR data for the native and mass labeled fluorinated telomer compounds are reported in Tables 2-5. Assignments of the resonances pertain to the numbering schemes shown in figure 1. Tables 2 and 3 only report the NMR data for the perfluorohexyl derivatives as the ¹H, ²H and ¹³C-NMR data do not change when the perfluoroalkyl group changes from 6 to 8 or 10 carbons. Tables 4 and 5 include the ¹⁹F-NMR data for the longer perfluoroalkyl compounds as these data are, of course, dependent on the number of fluorine atoms present.

The mass labeled fluorinated telomer alcohols are M+4 surrogate standards in which the labeling was achieved by introducing two ¹³C for carbons A and B and replacing the two protons on carbon A with two deuteriums. The changes are evident when comparing NMR data between native and mass labeled compounds, the later containing the following: deuterium resonances in the ²H-NMR, evidence of ¹³C coupling in the ¹H- and ²H-NMR, and strong ¹³C resonances for the two carbons enriched with ¹³C.

The mass labeled fluorinated telomer acids and unsaturated acids are M+2 surrogate standards in which the labeling was achieved by introducing two ¹³C for carbons A and B. Again, the changes are evident when comparing NMR data between native and mass labeled compounds, the later containing the following: carbon coupling in the ¹H-NMR, and strong ¹³C resonances for the two carbons enriched with ¹³C.

Isotopic purity of these compounds can be estimated using NMR spectroscopy. As an example with MFHET, there is a residual proton signal on carbon A (3.85 ppm, see figure 2) which is due to the fact that deuterium reagents are typically no more than 98% deuterated. In this case, the integration of the 3.85 ppm signal for MFHET corresponds to the presence of 2% proton. The protons on carbon B also show a small signal with no carbon coupling (2.29 ppm, see figure 2) due to the fact that 13 C reagents are never 100% 13 C. In this case, the integration estimates that the 13 C labeling was about the expected 99.1%. Very similar results were obtained with the longer perfluoroalkyl ethanol analogues. Statistical calculation using this data gives the abundance of the M+4 ion at 94.3% and the M+3 ion at 5.6%. A similar analysis can be done with the ¹³C labeling is approximately 99.1%.

Figure 1: Structure, numbering scheme and abbreviation for the fluorinated telomer acids

Fluorinated telomer alcohols

10 9	8	7	6	5	4	3	2	1	В	Α		С		
CF3-CF2	-CF2 CF3	CF2 -CF2	-CF2- -CF2 CF3-	CF2- CF2 CF2-	CF2 -CF2 CF2	-CF2 -CF2 -CF2	-CF2 -CF2 -CF2	-CF2 -CF2 -CF2	CH2 -CH2 CH2	-CH2 -CH2 -CH2	2-0 2-0 2-0	H)H)H	FDET (FOET (FHET (10:2 FTOH) 8:2 FTOH) 6:2 FTOH)

Fluorinated telomer acids

10	9	8	7	6	5	4	3	2	1	В	А	
CF3-	CF2	CF2	CF2	-CF2-	CF2-	CF2	-CF2-	CF2-	CF2-	CH2-	СО2Н	FDEA
		CF3	-CF2	-CF2	-CF2	-CF2	-CF2-	CF2	-CF2	-CH2	-CO2H	FOEA
		•	•	CF3-	CF2-	CF2	-CF2-	CF2-	CF2-	CH2-	CO2H	FHEA

Fluorinated unsaturated telomer acids

10	9	8	7	6	5	4	3	2	1	В	Α	
CF3-	CF2	CF2-	CF2-	CF2-	CF2-	CF2	-CF2-	CF2-	CF=	CH	CO2H	FDUEA
	•	CF3-	CF2	CF2	CF2	-CF2	-CF2-	CF2	CF	ŧCΗ	-CO2H	FOUEA
		:	:	CF3-	CF2-	CF2	CF2-	CF2-	CF-	CH	CO2H	FHUEA

Figure 2: ¹H-NMR of MFHET (values in the boxes are the relative integration of the signals)

GC/MS of 2-Perfluoroalkylethanols. GC/MS analysis was done for the fluorinated telomer alcohols. The GC/MS of the three native alcohols (FHET/FOET/FDET) each gave reasonably shaped peaks with different retention times (see figure 3). The mass-labeled M+4 analogues also gave single peaks with similar retention times.

ORGANOHALOGEN COMPOUNDS - Volume 66 (2004)

		FHET		FHEA	FHUEA		
	ppm	Coupling	ppm	Coupling	ppm	Coupling	
		constant (Hz)		constant (Hz)		constant (Hz)	
	1H-NM	IR in d4-methanol					
Α	3.85	t,	No prot	ons attached to Ca	No prot	ons attached to Ca	
		$J_3(HC_{A}-C_{B}H)=6.6$					
В	2.38	tt,	3.33	dt,	6.27	t,	
		$J_3(HC_B - C_A H) = 6.6$		$J_3(HC_B - C_1F) = 18.4$		$J_3(HC_B - C_1F) = 18.4$	
		$J_3(HC_B-C_1F)=19.2$					
	19F-NN	AR in d4-methanol					
1	-112.0	m	-111.5	m	-113.7	m	
2,3,4,5	-120.5,	-121.4, -122.3	-121.2,	-122.2, -122.4,	-120.0,	-124.1, -124.3,	
	-124.7		-125.7		-127.5		
6	-79.5	$J_3(FC_6 - C_5F) = 10.2$	-80.7	$J_3(FC_6 - C_5F) = 9.4$	-82.6	$J_3(FC_6 - C_5F) = 9.4$	
		$J_5(FC_6C_5C_4F)=2$					

Table 2: ¹H- and ¹⁹F-NMR data for the perfluorohexyl telomer compounds

Table 3: ¹H-, ²H-, ¹³C- and ¹⁹F-NMR data for the mass-labeled perfluorohexyl telomer compounds.

		MFHET		MFHEA	MFHUEA		
	ppm	Coupling	ppm	Coupling	ppm	Coupling	
		constant (Hz)		constant (Hz)		constant (Hz)	
	1H-NM	R in d4-methanol					
Α	3.85 ^a	dt,	No prot	ons attached to Ca	No prot	ons attached to Ca	
		$J_1(HC_A) = 130$					
		$J_3(HC_{A}-C_{B}H)=6.6$					
В	2.37	ddt,	3.33	dtt,	6.27	ddd,	
		$J_3(HC_B - C_1F) = 19.2$		$J_3(HC_B - C_1F) = 18.4$		$J_3(HC_B - C_1F) = 31.6$	
		$J_1(HC_B) = 130$		$J_1(HC_B) = 132$		$J_1(HC_B) = 169$	
		$J_2(HC_BC_A) = 4.8$		$J_2(HC_BC_A) = 7.2$		$J_2(HC_BC_A)=1$	
	2H-NM	R in d4-methanol					
В	3.97	d,	No deut	eriums present	No deuteriums present		
		$J_1(DC_B) = 22$		-		-	
	13C-NN	AR in d4-methanol					
Α	54.8	dp,	167.1	d,	167.1	d,	
		$J_1(C_B C_A) = 37$		$J_1(C_B C_A) = 57$		$J_1(C_B C_A) = 74$	
		$J_1(DC_B) = 22$					
В	34.0	dt,	37.3	dt,	109.4	d,	
		$J_1(C_B C_A) = 37$		$J_1(C_B C_A) = 57$		$J_1(C_B C_A) = 74$	
		$J_2(C_B - C_1 F) = 21$		$J_2(C_B - C_1 F) = 22.2$			
	19F-NN	IR in d4-methanol					
Fluorine N	MR signa	ls and couplings are	identical	to the ones shown fo	r the nati	ve analogues	

shown in Table 2. ^a This signal is reduced to 2% of its expected integration due to deuterium (98%) labeling

		FOET		FOEA	FOUEA		
	ppm	Coupling	ppm	Coupling	ppm	Coupling	
		constant (Hz)		constant (Hz)		constant (Hz)	
	19F-NN	IR in d4-methanol					
1	-113.9	m	-111.5	m	-111.5	m	
2,3,4,5,6,7	-122.1,	-122.3 (2X),	-121.0,	-121.2 (2X),	-118.1, -121.2, -121.3,		
	-123.1,	-124.2, -126.5	-122.0,	-122.3, -125.6	-122.1, -122.2, -125.6		
8	-81.3	$J_3(FC_6 - C_5F) = 10.2$	-80.7	$J_3(FC_6 - C_5F) = 10.2$	-80.7	$J_3(FC_6-C_5F)=10.2$	

Table 4: ¹⁹F-NMR data for the perfluorooctyl telomer compounds

Table 5: ¹⁹F-NMR data for the perfluorodecyl telomer compounds.

		FDET		FDEA	FDUEA		
	ppm	Coupling	ppm	Coupling	ppm	Coupling	
		constant (Hz)		constant (Hz)		constant (Hz)	
	19F-NN	IR in d4-methanol					
1	-112.1	m	-111.4	m	-113.7	m	
2,3,4,5,6,7,	-120.2 (5X), -121.2,	-121.0 ((5X), -122.0,	-119.9, -122.9 (4X),		
8,9	-122.0,	-124.7	-122.3,	-125.6	-123.9, -124.0, -127.4		
10	-79.8	$J_3(FC_6 - C_5F) = 10.2$	-80.6	$J_3(FC_6 - C_5F) = 10.2$	-82.5	$J_3(FC_{10}-C_9F) =$	
						10.2	

Figure 3. GC/MS TIC Chromatogram of FHET/FOET/FDET

LC/MS of the Fluorinated Telomer Compounds. The full mass spectra for the 18 native and mass labeled fluorinated telomer compounds were obtained via direct injection to the mass spectrometer. All showed their parent molecular ion with the expected mass. The saturated acids also showed the distinctive loss of HF in the fragmentation pattern. The fragmentation pattern for the native compounds was similar to the mass labeled compounds except for the expected lower masses (as an example, see figure 4).

The LC trace of all six native and six mass labeled fluorinated telomer acids from the LC/MS analysis gave one reasonably shaped peak. The retention times (minutes) recorded for the compounds were the following: FHEA:FOEA:FDEA (4.9:5.1:6.1); FHUEA:FOUEA:FDUEA

(5.1:5.5:6.2). The retention times of the mass labeled compounds were identical to their native analogues.

Figure 4. Mass spectrum of FHEA and MFHEA

Conclusions

This work has provided NMR data for the pure native and mass labeled fluorinated telomer compounds. The mass labeled compounds should prove useful as surrogate standards for the mass spectral analysis and quantification of this group of fluorinated telomer compounds.

References

1. Martin, J.W., Smithwick, M.M., Braune, B.M., Hoekstra, P.F., Muir, D.C.G., and Mabury, S.A., (2004), Environ.Sci. Tech., 38, 373-380.

2. Olsen, G.W., Church, T.R., Larson, E.B., van Belle, G., Lundberg, J.K., Hansen, K.J., Burris,

J.M., Mandel, J.H., and Zobel, L.R., (2004), Chemosphere, 54, 1599-1611.

3. Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Barbee, B.D., Richard, J.H.,

Butenhoff, J.L., Stevenson, L.A., and Lau, C., (2003), Toxicol. Sci. 74, 369-381.

4. Olsen, G.W., Hansen, K.J., Stevenson, L.A., Burris, J.M., and Mandel, J.H., (2003), Environ. Sci. Tech. 37, 888-891.

5. Kannan, K., Choi, J-W., Iseki, N., Senthilkumar, K., Kim, D.H., Masunga, S., and Giesy, J.P., (2002) Chemosphere, 49, 225-231.

6. Moody, C.A., Martin, J.W., Kwan, W.C., Muir, D.C.G., and Mabury, S.A., (2002) Environ.Sci. Tech., 36, 545-551.

7. Martin, J.W., Muir, D.C.G., Moody, C.A., Ellis, D.A., Kwan, W.C., Solomon, K.R., and Marbury, S.A., (2002) Anal. Chem., 74, 584-590.

8. U.S. Environmental Protection Agency. Perfluorooctanoic acid (PFOA), Fluorinated Telomers; Request for Commnet, Solicitation of Interested Parties for Enforceable Consent Agreement Development, and Notice of Public Meeting. Federal Register (2003). 68 (no.73), 18626-18633 (April 16, 2003). (www.epa.gov/epa-tox/2003/april/day-16/t9418.htm.htm)

9. (AR226-1149). Revision 1, Biodegradation Screen Study for Telomer-type Alcohols. Lange, C.C., Pace Analytical Services, Minneapolis, MN. Novemebr 6, 2002.

(www.cascade.epa.gov/RightSite/getcontent/Tempfile.pdf?DMW_OBJECTID=090007d4801562a 5&DMW_FORMAT=pdf)

10. Martin, J.W., Kannan, K., Berger, U., de Voogt, P., Field, J., Franklin., J., Giesy, J.P., Harner. T., Jones, K.C., Mabury, S.A., Miur, D.C.G., and van Bavel, B., (2004)