IMPROVEMENT OF SOLVENT CUT LARGE VOLUME (SCLV) INJECTION SYSTEM USING NARROW-BORE COLUMN IN DIOXINS ANALYSIS BY HRGC-HRMS

Kazuhiro Tobiishi, Tsuguhide Hori, Yasuhisa Ishiguro and Takao Iida

Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan

Introduction

An SCLV injection system has been developed as a quantitative technique on the scale of a few femtograms per microlitre^{1,2}. It is advantageous in that it allows a large volume injection without GC injector modification, and it can be carried out under high vacuum because of its narrow-bore column. This system should therefore contribute to improving column noise level and resolution. There has been a few information regarding different types of capillary columns. We presented comparison of the SCLV injection system with the conventional technique for analyzing dioxins by HRGC-HRMS using cyanopropyl phase capillary columns.^{3,4} The aim of this study is to improve SCLV injection system using narrower bore column.

Methods and Materials

All HRGC-HRMS analysis was conducted on a 6890 series GC (Agilent Technology, USA) equipped with Autospec-Ultima (Micromass, UK). The SCLV injection system (SGE, Australia) was equipped with a BPX-Dioxin-II ($3m \times 0.15mm$) capillary column (SGE, Australia) as the pre-column and an EQUITY-5 ($15m \times 0.1mm \times 0.1\mu m$) capillary column (Supelco, USA) as the analytical column. Four microlitre of standard (0.1ng/mL, 2,3,7,8-substituted PCDDs and PCDFs mixture) in nonane was injected. For the conventional SCLV injection system, a BPX-5 ($6m \times 0.25mm \times 0.25\mu m$) capillary column (SGE, Australia) as the pre-column and a BPX-5 ($30m \times 0.15mm \times 0.15\mu m$) capillary column (SGE, Australia) as the analytical column were used. The analytical conditions for the SCLV injection system are shown in Table 1.

Results and Discussion

Chromatograms of the dioxin standard were compared between the $15m\times0.1mm$ column system and the $30m\times0.15mm$ column system. The chromatograms of TeCDD, HxCDD, and HxCDF are presented in Figures 1-3, respectively; (A) stands for the use of the $15m\times0.1mm$ column system, and (B) for the use of the $30m\times0.15mm$ column system. These comparisons demonstrate excellent agreement between the two systems. The resolution of the chromatograms obtained using $15m\times0.1mm$ column system was slightly lower than that of the $30m\times0.15mm$ column system. The peak width of 2,3,7,8-TeCDD in the chromatogram for the $15m\times0.1mm$ column system was about 4 seconds, while that for the $30m\times0.15mm$ column system was about 8 seconds. It is considered that the cycle time per scan must be set shorter in the $15m\times0.1mm$ column system than in the $30m\times0.15mm$ column system.

Table 2 summarizes the ratios of native peak area to ${}^{13}C_{12}$ -labeled internal standard peak area. The data between the two techniques agreed by 95-118%. All PCDD/F analytes were eluted within about

28 minutes with the 15m×0.1mm column system, whereas elution took about 49 minutes with the 30m×0.15mm column system. When a standard was injected using the 15m×0.1mm column system, 0.4pg of 2,3,7,8-TeCDD was detected with S/N=398. This indicates that the 15m×0.1mm column system has the same sensitivity as the 30m×0.15mm column system, with which 0.4pg of 2,3,7,8-TeCDD was detected with S/N=381. From these results, it is concluded that the 15m×0.1mm column system is effective for determining low-level dioxins.

Column	(A) 15m×0.1mm×0.1µm	(B) 30m×0.15mm×0.15µm			
specifications	EQUITY-5 (non polar)	BPX-5 (non polar)			
Purge on time		5 min			
Injector	200%				
temperature		300 C			
Oven	$160^{\circ}C(4min) \rightarrow 20^{\circ}C/min \rightarrow$	$160^{\circ}C(3min) \rightarrow 20^{\circ}C/min \rightarrow$			
temperature	$300^{\circ}C(4.5min) \rightarrow 60^{\circ}C/min \rightarrow$	$300^{\circ}C(8min) \rightarrow 60^{\circ}C/min \rightarrow$			
	210°C (0.5min)→10°C/min→	210°C (0.5min)→3°C/min→			
	300°C (1.5min)	300°C (1min)			
Injector	688kPa (4min)→2kPa/min→	469kPa (3min)→418kPa/min→			
pressure	689kPa (11min)→265kPa/min→	678kPa (14.5min)→338kPa/min→			
	424kPa (1min)→8kPa/min→	340kPa (1min)→3.4kPa/min→			
	496kPa (1.5min)	442kPa (1min)			
Cold trap	3.5-17.5min cooling	2.5-20min cooling			
Solvent cut	4-15.5min solvent cut: off	3-18min solvent cut: off			
MS Resolution	>10000				
Channels	8-11				
Cycle time	210-220 ms	510-690 ms			

Table 1: Analytical conditions for the SCLV injection system

Table 2: Comparisons of retention time and peak-area ratios

	(A) 15m×0.1mm×0.1µm		(B) 30m×0.15mm×0.15µm	
	Retention time	peak-area ratios	Retention time	peak-area ratios
2378-TeCDD	22.43	1.08	32.71	1.10
2378-TeCDF	22.26	1.11	32.33	0.94
12378-PeCDD	23.68	0.99	36.51	0.94
12378-PeCDF	23.33	0.97	35.38	0.95
123478-HxCDD	24.88	0.90	40.23	0.87
123478-HxCDF	24.58	1.02	39.28	1.03
1234678-HpCDD	26.23	1.14	44.36	1.07
1234678-HpCDF	25.81	1.05	42.93	0.97
OCDD	27.56	1.15	48.25	1.04
OCDF	27.63	1.04	48.50	0.92

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

Figure 3: Chromatograms of HxCDF (A) 15m×0.1mm column system, (B) 30m×0.15mm column system

Acknowledgments

The author wishes to thank Mr. Tatsuya Ezaki at SGE Japan for his technical information in producing this paper.

References

- 1. Yuko M., Tohru M., Tatsuya E., Makoto O., Masatoshi M.; (2001) Organohalogen Compounds, <u>50</u>, 194.
- Tatsuya E., Yuko M., Tohru M., Makoto O., Hiroyasu I., Masatoshi M.; (2001) Organohalogen Compounds, <u>50</u>, 190.
- Kazuhiro T., Tsuguhide H., Yoichi K., Yasuhisa I. and Takao I.; (2002) Organohalogen Compounds, <u>55</u>, 179.
- 4. Tsuguhide H., Kazuhiro T., Yuki A., Reiko N. and Takao I.; (2002) Organohalogen Compounds, <u>55</u>, 95.