ANALYSIS OF LOW BROMINATED PBDD/F - ANALYSIS OF MBDD/MBDF TO T3BDD/T3BDF ON A SP2331 - COLUMN

Takeshi Nakano, Chisato Matsumura and Roland Weber¹

Hyogo Prefectural Institute of Public Health and Environmental Sciences, 3-1-27 Yukihira-cho, Suma-ku, Kobe 654-0037 Japan

¹ Ulmenstrasse 3, 73035 Goeppingen, Germany.

Introduction

In the last two decades the increased use of brominated organic compounds especially brominated flame retardants (BFR) resulted in the presence of brominated compounds indoor, in the waste stream and in the environment. Some of the BFR, in particular the pentabromodihenylether, are associated with the presence and the formation potential of brominated dibenzo-p-dioxins and dibenzofurans (PBDD/PBDF). Therefore the analysis of PBDD/PBDF received more attention in recent time.

In this respect also the analysis of low brominated PBDD/PBDF homologues might be interesting in some processes and samples: Brominated aromatic compounds are subjected to debromination reaction under various conditions and are dehalogenated more rapidly compared to chlorinated aromatic compounds. Under UV or exposure to sunlight, brominated aromatic compounds can undergo rapid debromination (1). Debromination reactions are also observed during thermal degradation of polybrominated aromatics (2, 3). Furthermore some prominent brominated flameretardants such as TBBP-A are low brominated aromatic compounds. The thermolysis of these compounds in the presence of a polymer matrix generates preferably low brominated PBDD/PBDF (4, 5). Therefore it might be interesting to have selected samples analysed for low brominated PBDD/PBDF.

For this study we synthesised a low brominated PBDD and PBDF mixture and optimised a temperature program on a SP2331 column.

Materials and Methods

Standards. The PBDD standards were synthesized by pyrolysis of bromophenols in Pyrex ampoules. The PBDD was synthesized by condensation of 2-monobromo phenol, 2, 4- and 2, 6-dibromophenol (DBP) and 2, 4, 6-tribromophenol (TBP) at 350°C (30 min). For the PBDF mixture all three monobromophenol isomers, Phenol and 2, 4-DBP were pyrolysed at 370°C (15 minutes) in the presence of trace amounts of CuBr₂. We obtained commercially 2,7-D₂BDF, 2,8-D₂BDF, 2,3,8-T₃BDF, 2,7/2,8-D₂BDD, 2,3,7-T₃BDD.

GC/MS Analysis. The analysis was carried out using an HP 5890 II gas chromatograph connected to a JMS-700 mass spectrometer (JEOL Ltd. Japan) (operating at a resolution >10 000). Temperature program used for isomer specific separation of the MBDD/F-T₃BDD/F on SP2331 column (60m, 0.32mm i.d., 0.20um,): 120°C, 1 min. isothermal; 20°C/min. to 200°C, 2°C /min. to 260°C, 30min. isothermal. Carrier gas flow rate: He 1.2mL/min. Masses of MBDD/MBDF to T₃BDD/T₃BDF are listed in table 1.

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

Figure 2: Chromatogram of M1BDF and T3BDF on SP2331 60m, 0.32mm i.d., 0.20um; 120°C (1 min.), 20°C/min. to 200°C, 2°C /min. to 260°C (30min).

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

M ₁ BrDD	261.9629	263.9610	M ₁ BrDF 245.9680	247.9661
D_2BrDD	339.8735	341.8715	D ₂ BrDF 323.8785	325.8765
T ₃ BrDD	419.7820	421.7800	T ₃ BrDF 403.7870	405.7850
T_4BrDD	497.6925	499.6904	T ₄ BrDF 481.6975	483.6955

Table 1: Selected masses (M+) of M₁BDD/M₁BDF to T₃BDD/T₃BDF for MS detection

Results and Discussion

Figure 1 show the chromatogram of M_1BDD and T_3BDD on the SP 2331 column. The use of the 2,4-DBP (resulting in 2- and 3- (7- and 8-) PBDD substitution) and 2,6-DBP (resulting in 1- and 4- (6- and 9-) PBDD substitution) produced a wide range of congeners within the D₂BDD. However since only 2,4-substituted and 2,4,6-substituted brominated phenols were available preferably the 1,3-substituded congeners (1,3,6-; 1,3,7-; 1,3,8- and 1,3,9-T_3BDD) were formed within the T₃BDD resulting only in a limited number of prominent T₃BDD isomers. However due to isomerisation/bromination reactions also other T₃BDD isomers were formed in about one order of magnitude lower concentrations.

Figure 2 show the chromatograms of M_1BDF and T_3BDF on the SP 2331 column. The use of all three monobromophenols produced a wide range of congeners within the D_2BDF . Due to the higher pyrolysis temperature and the addition of $CuBr_2$ the isomerisation/bromination reactions had a significant impact and hence a broad range of T_3BDF were formed (Figure 2).

On the high polar SP2331-column, all 4 M_1 BDF were separated and also for D_2 BDF and T_3 BDF a reasonable selectivity was achieved (Figure 2). However on the less polar DB5 column even the 4 M_1 BDF were not completely separated (not shown) while the 4 chlorinated M_1 CDF isomers could be separated also on this low polar column. This demonstrates that the selectivity for brominated congeners is smaller compared to the chlorinated congeners.

References

- 1. Watanabe I., Tatsukawa R. Formation of brominated dibenzofurans from the photolysis of flame retardant decabromobiphenyl ether in hexane solution by UV light (1987) Bull. Environ. Contam. Toxicol. 39, 953-957.
- 2. Striebich, R. C.; Rubey, W. A.; Tirey, D. A.; Dellinger, B. High temperature degradation of polybrominated flame retardant materials. Chemosphere 23: 1197-1204; 1991.
- Luijk, R.; Govers, H. A. J.; Nelissen, L. Formation of Polybrominated Dibenzofurans during extrusion of high-impact polystyrene/decabromodiphenyl ether/Antymony (III) oxide, Environ. Sci. technol. 26: 2191-219; 1992
- 4. Dumler, R; Thoma, H.; Lenoir, D.; Hutzinger O. PBDF and PBDD from the combustion of bromine containing flame retarded polymers: a survey. Chemosphere 19: 2023-2031; 1989b.
- 5. Wichmann, H.; Dettmer F., T.; Bahadir, M. Thermal formation of PBDD/F from tetrabromobisphenol A a comparison of polymer linked TBBP A with its additive incorporation in thermoplastics. Chemosphere 47: 349-355; 2002.