1

HUMAN EXPOSURE TO PCDDs, PCDFs AND Co-PCBs IN JAPAN, 2000

<u>Noriyuki Suzuki¹</u>, Noriko Ishikawa², Teiji Takei², Yukie Mato³, Shinji Nakayama³, Iwao Uchiyama⁴, Noritaka Katatani⁵, Kiwao Kadokami⁶, Takeshi Nakano⁷, Hideaki Miyata⁸, and Masatoshi Morita¹

¹National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; ²Ministry of the Environment, Tokyo, 100-8975, Japan; ³Japan Environmental Sanitation Center, 10-6 Yotsuyakamicho, Kawasaki, 210-0828, Japan; ⁴Kyoto University, Kyoto, 606-8501, Japan; ⁵University of Yamanashi, Kofu, 400-8511, Japan; ⁶Kitakyushu City Institute of Environmental Sciences, Kitakyushu, 804-0082, Japan; ⁷Hyogo Prefectural Institute of Public Health and Environmental Sciences, Kobe, 654-0037, Japan; ⁸Setsunan University, Hirakata, 573-0101, Japan

Introduction

The level of human exposure to dioxins (PCDDs, PCDFs, and Co-PCBs) in Japan was determined in the present study. To determine exposure levels, we collected and compiled survey results derived from the regular environmental monitoring of dioxins under Japan's Law Concerning Special Measures against Dioxins,¹ as well as other dioxin surveys by national and local governmental bodies in fiscal 2000 (April 2000 – March 2001). First, the exposure level was estimated in a "point" estimate (i.e., a single value derived from arithmetic means) approach based on the compiled data. Then the contributions of inhalation, soil ingestion, diet, and various foodstuffs were considered. Because an emphasis was placed on the importance of quantitatively characterizing the variability in exposure assessments,² the "probabilistic" approach was also conducted using a Monte Carlo simulation. This approach uses a distribution of data rather than a single data point to represent key exposure variables (e.g., chemical concentrations, dietary intake, and body weight, etc.). Particular attention was given to the variability of dioxin concentrations in air, soil and foods.

Materials and Methods

Dioxin survey results in Ministry of the Environment (MOE) $(2000)^1$ and other literature cited were compiled. Point estimation was conducted while taking three pathways into account:

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

2

inhalation, soil ingestion, and diet. Estimates of exposure through inhalation were based on arithmetic means of dioxin concentrations in the air, using a body weight³ of 50 kg and a daily respiration volume³ of 15 m³/day. Estimates of exposure through soil ingestion were obtained using arithmetic means of the dioxin concentration in the soil, a body weight³ of 50 kg, and daily ingestion of soil³ assumed to be 100mg/day. Total diet study (TDS) results in Tutsumi et.al $(2001)^4$ (n=16, average=1.45, range=0.84-2.01) were used to estimate exposure through diet. Dioxin concentration data of various foodstuffs were classified into food groups according to the Ministry of Health, Labour and Welfare (MHLW) (2002)⁵, and the contribution of each food group to total dietary exposure was estimated. The scheme for the Monte Carlo simulation was same as for the point estimation, except dioxin concentrations in the air and soil, and exposure through diet were represented as probabilistic density functions (air: Weibull distribution [L, s, m=0.01, 0.15, 1.3 pg-TEQ/m³], soil: lognormal distribution [m, 6=12, 410 pg-TEQ/g], foods: lognormal distribution [m, 6=1.46, 0.42 pg-TEQ/kg-bw/day]). The range of each probabilistic distribution was from zero to the maximum measurement result, including the data from the vicinity of pollution sources (air: 0-1.1 pg-TEQ/m³; soil: 0-1200 pg-TEQ/g; foods: 0-2.01 pg-TEQ/kg/day). For the Monte Carlo Simulation, Crystal Ball PRO® (Decisioneering Inc.) was used, with 5,000 trials. WHO98-TEF was used.

	n	Min.	25 th %tile	Median	75 th %tile	Max.	Arithmetic mean	Geometric mean	S.D.
Air			20 /0410	meanan	ie ione	1,100	moun	moun	5.51
pg-TEQ/m3	707	0.0073	0.065	0.12	0.19	0.76	0.14	0.11	0.11
Soil									
pg-TEQ/g	1943	0	0.067	0.44	2.7	280	4.6	0.38	18
Water (sea/river/lake)									
pg-TEQ/L	2128	0.012	0.08	0.14	0.32	48	0.31	0.17	1.2
Sediment (sea/river/lake)									
pg-TEQ/g	1838	0.0011	0.47	1.4	6.1	1400	9.6	1.7	46
Ground water									
pg-TEQ/L	1479	0.00081	0.054	0.069	0.11	0.89	0.097	0.073	0.090
Aquatic organisms									
pg-TEQ/g	80	0.42	1.4	2.8	4.4	17	3.7	2.7	3.2
Purified water									
(water purification plant)	104	0.0013	0.0052	0.012	0.022	0.10	0.020	0.011	0.022
Raw water									
(water purification plant)	117	0	0.014	0.023	0.063	0.41	0.056	0.031	0.075
Human breast milk									
pg-TEQ/g-fat	223	-	-	-	-	-	23	-	-
Total diet study									
pg-TEQ/kg/day	20	0.84	1.3	1.5	1.8	2.2	1.5	1.4	0.40

Results and Discussion

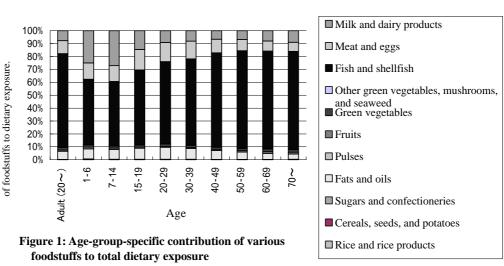
Table 1: Dioxin concentrations in vario	us media and total diet stud	v results in Japan, FY2000

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

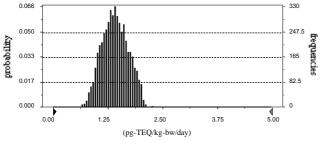
3

Table 1 shows compiled data on dioxin concentrations in various media as well as TDS results. Data from the vicinity of pollution sources are not included in this table. Point exposure estimates, which were based on arithmetic means of exposure variables, through the each pathway and in total are shown in Table 2. Total exposure was estimated at 1.50 pg-TEQ/kg-bw/day, and exposure through inhalation, soil ingestion, and diet were 0.042, 0.0092, and 1.45 pg-TEQ/kg-bw/day, respectively. Exposure through diet accounted for more than 90% of the total exposure; the contributions through inhalation and soil ingestion were relatively small. Regarding dioxins in foodstuffs, the high concentrations in fish and shellfish were remarkable (average=0.87, range=0-10 pg-TEQ/g) (Table 3). Age-group-specific contributions of various foodstuffs to total dietary exposure are shown in Figure 1; the estimates of exposure through fish and shellfish account for approximately 50-70% of total dioxin exposure in each age group. Figure 2 shows the results of a probabilistic approach using the Monte Carlo Simulation method. The estimated average, median, 5 th percentile and 95th percentile of the exposure distribution are 1.43, 1.42, 0.95 and 1.93 pg-TEQ/kg-bw/day, respectively. In

Table 2: Estimates of exposureestimate to dioxins (pg-TEQ/kg-bw/day)


Inhalation	0.042
Soil ingestion	0.0092
Diet	1.45
Total	1.50

conclusion, this study found that both the average and the 95th percentile of the dioxin exposure distributions in Japan were estimated below the World Health Organisation's tolerable daily intake levels (i.e., 4 pg-TEQ/kg-bw/day). This study also clarified that the diet—especially fish and shellfish—is the most important pathway for dioxin


Table 3: Dioxin concentration	(pg-TEQ/g)					
Foodstuffs	n	Min.	Median	Max.	Arithmetic mean	
Rice and rice products	91	0	0.000027	0.015	0.00062	
Cereals, seeds, and potatoes	26	0	0.0000030	0.00078	0.00010	
Sugars and confectioneries	3	0	0.0030	0.019	0.0073	
Fats and oils	5	0.24	0.40	0.98	0.47	
Pulses	13	0	0	0.0010	0.00033	
Fruits	61	0	0	0.35	0.010	
Green vegetables	53	0	0.00024	0.15	0.021	
Other green vegetables, mushrooms, and seaweed	74	0	0	0.059	0.0022	
Fish and shellfish	186	0	0.32	10	0.87	
Meat and eggs	64	0	0.032	1.7	0.11	
Milk and dairy products	21	0	0.061	0.47	0.096	

exposure in Japan. the In future, assessments of for exposure children should be elaborated, because high dioxin exposure of children is a serious health concern. In addition. because of the importance of

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

*Dietary intake and body weight of each age group obtained from MOE(2000)³.

dietary exposure future research should address the variability of amounts of dietary intake, using a probabilistic approach.

Figure 2: Distribution of dioxin exposure in Japan, FY2000 estimated by Monte Carlo simulation.

References

Exposure contributions of various kinds

- Ministry of the Environment, Japan (2001) Environmental Survey of Dioxins FY 2000 Results, http://www.env.go.jp/en/topic/dioxins.html
- U.S. Environmental Protection Agency (1997) in: Guiding Principles for Monte Carlo Analysis, EPA/630/R-97/001
- 3. Ministry of the Environment, Japan (2000) Detailed Study of Dioxin Exposure: Findings of the Fiscal 1999 Survey, http://www.env.go.jp/en/topic/dioxins.html
- Tsutsumi T., Yanagi T., Nakamura M., Kono Y., Uchibe H., Iida T., Hori T., Nakagawa R., Tobishi K., Matsuda R., Sasaki K. and Toyoda M. (2001) Chemosphere, 45, 1129-1137
- Ministry of Health, Labour and Welfare, Japan (2002) in: The National Nutrition Survey in Japan, 2000, ISBN 4-8041-0994-3 (in Japanese)

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

4