DECHLORINATION PATHWAYS AND KINETICS IN PHOTO-CHEMICAL REACTION AND CATALYTIC HYDRO-DECHLORINATION -EFFECT OF THE COEXISTENCE OF TWO PCB CONGENERS-

Yukio Noma¹, Takehiko Muramatsu², Masayuki Ohno³, Shin-ichi Sakai¹,

1 National Institute for Environmental Studies, 16-2, Onogawa, Tukuba, Ibaraki 305-0053, Japan

2 Toshiba Corporation, 4-1, Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862, Japan

3 Kansai Tech Corporation, 3-1-176, Fukuzaki, Minato-ku, Osaka 552-0013, Japan

Introduction

Photo-chemical dechlorination (P.C.D.) ¹⁾ and catalytic hydro-dechlorination (C.H.D.) ²⁾ have potential to be the actual commercial processes to degrade PCBs because of their closed systems, mild conditions and clearness of the final products (biphenyl). In the previous work, dechlorination pathways of nine individual PCB in the reactions of C.H.D. and P.C.D. were reported ^{3,4)}. In this work, 2,3,4-trichlorobiphenyl (#21), 2,4,4'-trichlorobiphenyl (#28), 3,3',4,4',5-penthachlorobiphenyl (#126), 2,2',4,4',5,5'-hexachlorobiphenyl (#153), the mixture of #21 and #28, and those of #153 and #126 have been used for the starting materials in the P.C.D. and C.H.D. We analyzed PCB congeners produced in the different reaction times by each dechlorination method, and then the effect of the coexistence of two congeners to the dechlorination pathways and the degradation kinetics has been discussed.

Materials and Methods

Four individual congeners (IUPAC No., #21, #28, #126, and #153) were purchased from AccuStandard Co. They were used for the starting materials of each single reaction of C.H.D and P.C.D to examine the dechlorination pathways and the kinetics. And next, the same concentration mixture of #21/#28 and those of #153/#126 were used for the starting mixture in order to compare the differences by the effect of the coexistence. The reaction equipments, conditions and the analytical methods were mentioned in the previous report³.

Results and Discussion

1. Dechlorination pathways

Table1 and 2 show the concentrations of the starting materials and the products at each reaction time in the single reaction by the C.H.D using #21 and #28, and Table3 shows the mixing reaction of them. Table4, 5 and 6 show them by the P.C.D. Figure 1 and 2 show them using #126 and #153 by the C.H.D and P.C.D. Dechlorination did not changed when they were mixed in the each reactions. Differences of the dechlorination pathways between at the single reaction and at the coexistence reaction were not found in the C.H.D. and P.C.D. reactions. Similar to the previous report^{3,4}, ortho chlorines were lost at a slower rate than meta and para chlorines, and the dechlorination reactions mainly produced ortho-chlorinated congeners in the C.H.D. In the case of only ortho chlorine, ortho chlorine is easily released and in the case of two ortho chlorines, para chlorine is easily released in the P.C.D. In the case of the congener that has three adjacent chlorine substituents, middle chlorine atom situated between two other chlorines showed low reactivity in the C.H.D., but showed high reactivity in the P.C.D. The dechlorination pathways of #21, #28 and #126, #153 in the mixing reaction are shown in the Figure 3 and 4.

Table1 T	he concentration of	#21 and tl	eir produ	cts at diffe	rent times	in the C.I	I.D. reacti	on		100 r	
	Congeners	Initial	Omin	5min	10mii	n 20mii	1				#153
3CBs	2.3.4 (#21)	127	79	45	19	11	_				
2CBs	2,3 (#5)		22	58 20	49	23					#126 #12
	3.4 (#12)		0.88	2.5	3.6	1.5					#4
A1CBs	2 (#1)		22	43	51	33	_			10	
	3(#2) 4(#3)		0.34	1.1	1.9 4 9	1.3				_	#38
		#20 1.4					-		i i	lo¥L	
able2 I	Congeners	#28 and ti	ieir produ	Conc	centration	(µmol/L)	1.D. reacti	on		a de la	
CD	2 4 41(#20)	Initial	Omin	5min	10min	15min	20min	30min	_ `	atto	#40
3CBs	2,4,4 (#28)	133	41	11	1.6	0.1				enta	
D2CBs	2,4(#7)	15	29	23	10	2.2	0.25	-	-	once	#18
	2,4'(#8)	0.46	35	24	8.1	1.2	0.1			ŏ	#101
MICD	2,5(#9)		2.8	2.6	1.1	0.43	0.06	0.12	_	0.1	****
MICBS	2(#1) 4(#3)		3.2	5.2	34 2.3	0.55	5.6 0.091	0.13	_		#3
Fable3 T	he concentration of	#21/#28 a	nd their p	roducts at	different t	imes in the	e C.H.D. n	eaction			
	Congeners		•	Conc	centration	(µmol/L)			_		
magn	eongeners	Initial	Omin	5min	10min	15min	20min	30min	_	0.01	
13CBs	2,3,4(#21)	139	99 20	73	47	24	11	11		0.01	1nitial 0 5 10 15 20 30 40 50
	2,4',5(#31)	10	3.5	1.6	0.36	0.45					Reaction time (min)
D2CBs	2,3(#5),2,4'(#8)	•••	55	58	49	35	23	5.7	-		▲ 152 — 101 → 126 → 40 → 70 ■
	2,4(#7)		33	29	16	6.9	2.5	0.15			- 155 - 101 - 120 - 48 - 78 - 78 - 78 - 78 - 78 - 78 - 78
	2,5(#9)		2.4	2.2	1.3	0.65	0.22	o · · ·			
	3,4(#12) 4 4'(#15)		0.88	2.5	3.6	2.7	1.5	0.14		F in	1 The concentration is the minimum state of #106 (#152).
M1CBs	2(#1)		22	43	51	43	33	9.3	_	r gure l	1 The concentration in the mixing reaction of #126/#153 by C
	3(#2)		0.34	1.1	1.9	2	1.3	0.22			
	4(#3)		3.3	5.5	4.9	2.1	0.73	0.062	_	100 -	
										100	#152
Table4 T	he concentration of #	#21 and th	eir produc	cts at differ	ent times i	in the P.C.	D. reaction	1			**************************************
	Congeners			Conce	entration ((µmol/L)					
T2CD-	2.2.4(#21)	Initial	10min	20min	30min	40min	50min	60min			#126
ISCBS	2,5,4(#21) 2.4.5(#29)	200	0.82	4.4	0.2	0.41	0.17				
	2',3,4(#33)		18	5.6	1.8	0.96	0.51	0.14	Ê	1 10	
D2CBs	2,3'(#6)		0.27	0.25	0.12	0.091	0.056		70	3 10	#79 🗶
	2,4(#7)	0.45	1.1	0.49	0.21	0.13	0.093		E	1	
	2,4'(#8)		1.4	0.74	0.4	0.22	0.13	11		÷	
M1CBs	3(#2)		0.92	1.4	1.6	2	2.5	2.6			
	4(#3)		13	17	20	23	31	34	. <u>5</u>		
Table5 T	he concentration of a	#28 and th	air produz	rte at differ	ont timos i	in the PC	D reaction		Cer	1	
Tables I	C-n	720 and th	en produc	Conce	entration ((µmol/L)	D. reaction	<u>.</u>	c,	5 1	
	Congeners	Initial	10min	20min	30min	40min	50min	60min			#36 🖬 🕺 #2
T3CBs	2,4,4'(#28)	150	12	1.9	0.43	0.24	0.01	0.17			
D2CBs	2,4 ,5(#31) 3 4'(#13)	3.8	0.69	1.2	1.4	1.8	1.9	2			#11 #26
02005	4,4'(#15)		100	140	120	130	110	140			#52 * #14
M1CBs	3(#2)			0.068	0.036	0.12	0.15	0.23		0.1	
	4(#3)		1	2.4	3.6	5.5	6.3	9		01	0 10 20 30 40 50
Table6 T	he concentration of #	#21/#28 ai	nd their pr	oducts at d	lifferent tit	mes in the	P.C.D. rea	ction			Retention time (m in)
	Congeners	Initial	10min	20min	30min	40min	50min	60min		-	► #153 - #101 - <u>*</u> #126 - <u>*</u> #52 - <u>*</u> #79 -
T3CBs	2,3,4(#21)	69	6.9	1.3	0.33						#36 #11 #14 -+ #2 #3
	2,4,4'(#28)	46	2.3	0.3						Finne	2. The concentration in the mixing reaction of #126/#153
	2,4,5(#29)	3.4	0.28	0.12	0.5	0.3	0.13			- Surc	2 The concentration in the in King reaction 01 #120/#1331
	2',3,4(#33)	2.1	5.4	1.8	0.49	0.19	0.13				
D2CBs	2,3'(#6)			0.13							
	2,4(#7)		0.33	0.15	0.052						
	2,4'(#8)		0.48	0.29	0.14	12	6.4	4.0			
	5,4(#12)/5,4 (#15) 4 4'(#15)		33	21 40	14	12	6.4 33	4.9			
M1CBs	3(#2)		0.69	1.6	2.1	2.7	2.6	2.6			
	4(#3)		8.2	20	28	38	35	35			
				۶	a						
		IN	\bigcirc	$\succ 0$,⊢a —	► (\mathcal{K}))-a		çı	
	Ç	<u> </u>	,	#12		~	- \= #2	- ·)_cí #15 #3
	\square	ม	1				#3		~ 🅑	\subseteq	۲ ^۳
	$\forall \forall$	~ .		ę p	x		Q		#	#28	
	#21		\cap	$\Box \bowtie$	、 —•		\sim	J .			Pd/C [−] c+{()}-{()} → {()}-{()}
		Pd/C	\lor	$^{\prime}$			∕∕∿∟	<u>/</u>			
				#5			#1				#8 #1

Figure 3 Major pathways of #21 and #28

e m ixing reaction of #126/#153 by PCD

Organohalogen Compounds, Volumes 60-65, Dioxin 2003 Boston, MA

Figure 4 Major pathways of #126 and #153

2. Dechlorination kinetics

Figure 5 and 6 shows the decreases of the each congener in the reaction of C.H.D using #21, #28 and #126, #153 in the cases of single reaction and the mixing reaction. Figure 7 and 8 shows them in the case of P.C.D. Table 7 and 8 show the degradation rate constant and the half-lives of each congener in the single or mixing reaction by C.H.D and P.C.D. respectively. The degradation rate in the mixing reaction (Km) was smaller than that in the single reaction (Ks) by C.H.D. It was considered that the chance of the chlorine contact against the catalyst was about half, because the total concentrations of the starting congeners in the solution of the mixing reaction were twice as those of the single reaction. Meanwhile, Km was larger than Ks by P.C.D. That might be influenced by total initial concentrations. Because concentrations in the mixing reaction were lower than those in the single reaction by P.C.D.

The ratio of the kinetic constant in the single reaction of #28 and #21 by the C.H.D, Ks (#28/#21)was 2.1. and that in mixing the Km reaction, (#28/#21)was 3.2. The ratio of Ks (#126/#153) was 2.2, and Km

(#126/#153) was 4.6. Ratio of the degradation rates became progressively greater when the two congeners were mixed in the C.H.D reaction. In the case of C.H.D, two congeners compete with each other to react on the catalyst surface, and then the congener that has a bigger degradation rate would more preferentially adsorbed on the catalyst surface than that has smaller degradation rate. After all, in the case of mixing

reaction, #28 and #126 were decomposed more preferentially than #21 and #153 respectively, and then the ratio of the degradation rates became bigger than those of the single reaction. On the other hand, the ratio of Ks (#28/#21) was 1.4, and Km (#28/#21) was 1.4. The ratio of Ks (#126/#153) was 2.6, and Km (#126/#153) was 2, in the case of P.C.D. The ratio of them was little changed. The degradation rate might be determined by the first step of chlorine releasing from the PCB molecule by getting the ultra-violet energy in the P.C.D.

Table7	Kinetic constants and half-lives in the single or mixing read	tion by C.H.D.
	Single reaction	Mixing reaction

Congonore	Kinetic constants (Ks)	Half-life	Kinetic constants (Km)	Half-life	
Congeniers	(min)	(min)	(min)	(min)	
#21	0.203	3.41	0.093	7.42	
#28	0.418	1.66	0.299	2.32	
#28 /#21	2.1		3.2		
#126	0.591	1.17	0.309	2.24	
#153	0.274	2.53	0.067	10.3	
#126 /#153	2.2		4.6		
ble8 Kinetic co	onstants and half-lives in	the single or mi	xing reaction by P.C.D.		
ble8 Kinetic co	onstants and half-lives in Single read	the single or mi	xing reaction by P.C.D. Mixing read	ction	
ble8 Kinetic co	onstants and half-lives in Single read Kinetic constants (Ks)	the single or mi tion Half-life	xing reaction by P.C.D. Mixing read Kinetic constants (Km)	ction Half-life	
oble8 Kinetic of Congeners	Distants and half-lives in Single read Kinetic constants (Ks) (min)	tion Half-life (min)	xing reaction by P.C.D. Mixing read Kinetic constants (Km) (min)	ction Half-life (min)	
Congeners #21	Distants and half-lives in Single read Kinetic constants (Ks) (min) 0.139	tion Half-life (min) 4.87	xing reaction by P.C.D. Mixing read Kinetic constants (Km) (min) 0.176	tion Half-life (min) 3.94	
Congeners #21 #28	Distants and half-lives in Single reac Kinetic constants (Ks) (min) 0.139 0.194	the single or mi tion Half-life (min) 4.87 3.57	xing reaction by P.C.D. Mixing read Kinetic constants (Km) (min) 0.176 0.251	ction Half-life (min) 3.94 2.76	
Congeners #21 #28 #28/#21	Distants and half-lives in Single reac Kinetic constants (Ks) (min) 0.139 0.194 1.4	the single or mittin Half-life (min) 4.87 3.57	xing reaction by P.C.D. Mixing reac Kinetic constants (Km) (min) 0.176 0.251 1.4	Half-life (min) 3.94 2.76	
Congeners #21 #28 #28/#21 #126	Distants and half-lives in Single reac Kinetic constants (Ks) (min) 0.139 0.194 1.4 0.0748	the single or mittion Half-life (min) 4.87 3.57 9.26	xing reaction by P.C.D. Mixing read Kinetic constants (Km) (min) 0.176 0.251 1.4 0.115	ction Half-life (min) 3.94 2.76 6.03	
bble8 Kinetic co Congeners #21 #28 #28/421 #126 #153	Instants and half-lives in Single reac Kinetic constants (Ks) (min) 0.139 0.194 1.4 0.0748 0.0285	the single or mi tion Half-life (min) 4.87 3.57 9.26 24.3	xing reaction by P.C.D. Mixing reac Kinetic constants (Km) (min) 0.176 0.251 1.4 0.115 0.0569	ction Half-life (min) 3.94 2.76 6.03 12.2	

Acknowledgements

The presented project was financially supported by a Grant-in-aid for the Development of Innovative Technologies from the Ministry of Education, Culture, Sports, Science and Technology From Japan.

References

- 1. N. Tajima, M. Kon, K. Nishizawa, and A. Watanabe, (2002) Waste Management Research, 13, 3
- 2. M. Ohno, H.Kaneda, and K Hirata, (1997) Organohalogen Compound, 31, 405
- 3. Y. Noma, T. Muramatsu, K. Nishizawa, M. Ohno, S. Sakai, (2002) Organohalogen Compounds, 56, 413
- 4. Y. Noma, M. Ohno, S. Sakai (2003) Fresenius Environ. Bull, 12, 1, in press