DECHLORINATION PATHWAYS AND KINETICS IN PHOTO-CHEMICAL REACTION AND CATALYTIC HYDRO-DECHLORINATION -EFFECT OF THE COEXISTENCE OF TWO PCB CONGENERS-

YukioNoma ${ }^{1}$, TakehikoMuramatsu ${ }^{2}$, MasayukiOhno ${ }^{3}$, Shin-ichi Sakai ${ }^{1}$,
1 National Institute for Environmental Studies, 16-2, Onogawa, Tukuba, Ibaraki 305-0053, Japan
2 Toshiba Corporation, 4-1, Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862, Japan
3 Kansai Tech Corporation, 3-1-176, Fukuzaki, Minato-ku, Osaka 552-0013, Japan

Introduction

Photo-chemical dechlorination (P.C.D.) ${ }^{1)}$ and catalytic hydro-dechlorination (C.H.D.) ${ }^{2)}$ have potential to be the actual commercial processes to degrade PCBs because of their closed systems, mild conditions and clearness of the final products (biphenyl). In the previous work, dechlorination pathways of nine individual PCB in the reactions of C.H.D. and P.C.D. were reported ${ }^{3,4)}$. In this work, 2,3,4-trichlorobiphenyl (\#21), 2,4,4'-trichlorobiphenyl (\#28), 3,3',4,4',5-penthachlorobiphenyl (\#126), 2,2',4,4',5,5'-hexachlorobiphenyl (\#153), the mixture of \#21 and \#28, and those of \#153 and \#126 have been used for the starting materials in the P.C.D. and C.H.D. We analyzed PCB congeners produced in the different reaction times by each dechlorination method, and then the effect of the coexistence of two congeners to the dechlorination pathways and the degradation kinetics has been discussed.

Materials and Methods

Four individual congeners (IUPAC No., \#21, \#28, \#126, and \#153) were purchased from AccuStandard Co. They were used for the starting materials of each single reaction of C.H.D and P.C.D to examine the dechlorination pathways and the kinetics. And next, the same concentration mixture of \#21/\#28 and those of \#153/\#126 were used for the starting mixture in order to compare the differences by the effect of the coexistence. The reaction equipments, conditions and the analytical methods were mentioned in the previous report ${ }^{3)}$.

Results and Discussion

1. Dechlorination pathways

Table1 and 2 show the concentrations of the starting materials and the products at each reaction time in the single reaction by the C.H.D using \#21 and \#28, and Table3 shows the mixing reaction of them. Table4, 5 and 6 show them by the P.C.D. Figure 1 and 2 show them using \#126 and \#153 by the C.H.D and P.C.D. Dechlorination did not changed when they were mixed in the each reactions. Differences of the dechlorination pathways between at the single reaction and at the coexistence reaction were not found in the C.H.D. and P.C.D. reactions. Similar to the previous report ${ }^{3,4)}$, ortho chlorines were lost at a slower rate than meta and para chlorines, and the dechlorination reactions mainly produced ortho-chlorinated congeners in the C.H.D. In the case of only ortho chlorine, ortho chlorine is easily released and in the case of two ortho chlorines, para chlorine is easily released in the P.C.D. In the case of the congener that has three adjacent chlorine substituents, middle chlorine atom situated between two other chlorines showed low reactivity in the C.H.D., but showed high reactivity in the P.C.D. The dechlorination pathways of \#21, \#28 and \#126, \#153 in the mixing reaction are shown in the Figure 3 and 4.

	Congeners	Concentration ($\mu \mathrm{mol} / \mathrm{L}$)				
		Initial	0 min	5 min	10 min	20 min
T3CBs	2.3,4(\#21)	127	79	45	19	11
D2CBs	2,3 (\#5)		55	58	49	23
	2,4 (\#7)		33	29	16	2.5
	3,4 (\#12)		0.88	2.5	3.6	1.5
M1CBs	2 (\#1)		22	43	51	33
	3(\#2)		0.34	1.1	1.9	1.3
	4(\#3)		3.3	5.5	4.9	0.73

	Congeners	Concentration ($\mu \mathrm{mol} / \mathrm{L}$)						
		Initial	10 min	20 min	30 min	40 min	50 min	60 min
T3CBs	2,3,4(\#21)	200	22	4.4	1.1	0.41	0.17	
	2,4,5(\#29)		0.82	0.35	0.2			
	2, 3, 4, \#33)		18	5.6	1.8	0.96	0.51	0.14
$\overline{\text { D2CBs }}$	2,3'(\#6)		0.27	0.25	0.12	0.091	0.056	
	2,4(\#7)	0.45	1.1	0.49	0.21	0.13	0.093	
	2, 4^{\prime} (\#8)		1.4	0.74	0.4	0.22	0.13	
	3,4(\#12)/3,4'(\#13)		70	39	22	14	12	11
M1CBs	3(\#2)		0.92	1.4	1.6	2	2.5	2.6
	4(\#3)		13	17	20	23	31	34

Table5 The concentration of \#28 and their products at different times in the P.C.D. reaction

Congeners		Concentration ($\mathrm{mmol} / \mathrm{L}$)						
	n	Initial	10 min	20 min	30 min	40 min	50 min	60 min
T3CBs	$2,4,4^{\prime}(\# 28)$	150	12	1.9	0.43			
	$2,4^{\prime}, 5(\# 31)$	3.8	1.9	1.2	0.76	0.34	0.21	0.17
D2CBs	$3,4^{\prime}(\# 13)$		0.69	1.7	1.4	1.8	1.9	2
	$4,4^{\prime}(\# 15)$		100	140	120	130	110	140
M1CBs	$3(\# 2)$			0.068	0.036	0.12	0.15	0.23
	$4(\# 3)$	1	2.4	3.6	5.5	6.3	9	

Table6 The concentration of \#21/\#28 and their products at different times in the P.C.D. reaction

Concentration (رmol/L)								
	Congeners	Initial	10 min	20 min	30 min	40 min	50 min	60 min
T3CBs	$2,3,4(\# 21)$	69	6.9	1.3	0.33			
	$2,4,4^{\prime}(\# 28)$	46	2.3	0.3				
	$2,4,5(\# 29)$		0.28	0.12				
	$2,,^{\prime}, 5(\# 31)$	3.4	1.6	0.89	0.5	0.3	0.13	
	$2^{\prime}, 3,4(\# 33)$		5.4	1.8	0.49	0.19		
D2CBs	$2,3^{\prime}(\# 6)$			0.13				
	$2,4(\# 7)$		0.33	0.15	0.052			
	$2,4^{\prime}(\# 8)$		0.48	0.29	0.14			
	$3,4(\# 12) / 3,4^{\prime}(\# 13)$	22	21	14	12	6.4	4.9	
	$4,4^{\prime}(\# 15)$		33	40	39	44	33	37
M1CBs	$3(\# \#)$		0.69	1.6	2.1	2.7	2.6	2.6
	$4(\# 3)$	8.2	20	28	38	35	35	

Figure 3 Majr pathways of \#21 and \#28

Figure 4 M aj̇r pathways of\#126 and \#153

2. Dechlorination kinetics

Figure 5 and 6 shows the decreases of the each congener in the reaction of C.H.D using \#21, \#28 and \#126, \#153 in the cases of single reaction and the mixing reaction. Figure 7 and 8 shows them in the case of P.C.D. Table 7 and 8 show the degradation rate constant and the half-lives of each congener in the single or mixing reaction by C.H.D and P.C.D. respectively. The degradation rate in the mixing reaction (Km) was smaller than that in the single reaction (Ks) by C.H.D. It was considered that the chance of the chlorine contact against the catalyst was about half, because the total concentrations of the starting congeners in the solution of the mixing reaction were twice as those of the single reaction. Meanwhile, Km was larger than Ks by P.C.D. That might be influenced by total initial concentrations. Because concentrations in the mixing reaction were lower than those in the single reaction by P.C.D.
The ratio of the kinetic constant in the single reaction of \#28 and \#21 by the C.H.D, Ks (\#28/\#21) was 2.1, and that in the mixing reaction, Km (\#28/\#21) was 3.2. The ratio of Ks (\#126/\#153)

Fijure 6 The C oncentratin of \#126 and \#153 by CHD was 2.2 , and Km (\#126/\#153) was 4.6. Ratio of the degradation rates became progressively greater when the two congeners were mixed in the C.H.D reaction. In the case of C.H.D, two congeners compete with each other to react on the catalyst surface, and then the congener that has a bigger degradation rate would more preferentially adsorbed on the catalyst surface than that has smaller degradation rate. After all, in the case of mixing
reaction, \#28 and \#126 were decomposed more preferentially than \#21 and \#153 respectively, and then the ratio of the degradation rates became bigger than those of the single reaction. On the other hand, the ratio of Ks (\#28/\#21) was 1.4, and Km (\#28/\#21) was 1.4. The ratio of Ks (\#126/\#153) was 2.6 , and $\mathrm{Km}(\# 126 / \# 153)$ was 2, in the case of P.C.D. The ratio of them was little changed. The degradation rate might be determined by the first step of chlorine releasing from the PCB molecule by getting the ultra-violet energy in the P.C.D.

Acknowledgements

The presented project was financially supported by a Grant-in-aid for the Development of Innovative Technologies from the Ministry of Education, Culture, Sports, Science and Technology From Japan.

References

1. N. Tajima, M. Kon, K. Nishizawa, and A. Watanabe, (2002) Waste Management Research, 13, 3
2. M. Ohno, H.Kaneda, and K Hirata, (1997) Organohalogen Compound, 31, 405
3. Y. Noma,T. Muramatsu,K. Nishizawa,M. Ohno,S. Sakai, (2002) Organohalogen Compounds, 56, 413
4. Y. Noma, M. Ohno, S. Sakai (2003) Fresenius Environ. Bull, 12, 1,in press
