Dioxin analysis : Harmonized Guidelines and Criteria for the Validation and Quality Control

Jin-Wook Kwon, Seong-Suk Jeon , Tae-Uk Jeong

Busan Regional Office, National Veterinary Research & Quarantine Service 620-2, P.O. BOX 620-030 Amnam-dong, Seo-gu, Busan, Korea

Introduction

Disaccord problems for the validation and quality control of analytical work related to polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) among the different methods are presented. The intention is that international harmonized guidelines are need to help to ensure the reliability and comparability of results, especially those which may be used as a basis for the establishing the national residue limit for regulations and international trade. Some examples of the disaccord for the validation and quality control work affect quantification are presented in Table 1.

	US EPA Method	United Kingdom
Signal-to-noise ratios	-Qualitative Determination; ≥2.5 for each	-Qualitative Determination; > 2 for
	CDD or CDF detected in a sample extract	all relevant standards >20 for
	and ≥ 10 for all CDDs/CDFs in calibration	internal quantification standard.
	standard.	-Measured response significantly
		greater than that for blank.
Ion abundance ratios	-The ratio of the integrated areas must be	-Isotope ratio within ±15% of mean
	within the $\pm 15\%$ of the theoretical ion	for standards.
	abundance ratio.	
	-Or within ±10% of the ratio in the	
	midpoint(CS3) calibration or calibration	
	verification(VER).	
Retention times	-The relative tR of the peak for	-Simultaneous $(+2/-0s \text{ or } +2/-0)$
	2,3,7,8-substituted CDD/CDFs must be	scans) response for analyte and
	within the established criteria limit.	matching internal standard.
	-The tR of peaks representing non	-Identical tR ($\pm 2s$ or ± 2 scans) for
	2,3,7,8substituted CDD/CDFs must be	analyte and matching external
	within the retention time windows	standard.
	established.	-For hepta and octa chloro can be
	-The absolute tR of the ${}^{13}C_{12}$ -1,2,3,4-TCDD	increased $\pm 4s$ or ± 4 scans.
	and ${}^{13}C_{12}$ -1,2,3,7,8,9-HxCDD GCMS	
	internal standards in the verification test	
	shall be within ± 15 s of the tR obtaining	
	during calibration.	

Table 1. Examples of criteria for conformation of identity and acceptance of quantification

	-The relative tR of CDDs/CDFs and labeled	
	compounds in the verification test shall be	
	within the established limit.	
Recovery	-The recovery of each labeled compound	-Correct use of Internal quanti-
	must be within the given limit. If the	fication standards(IQS) provides
	recovery of any compound fall out side of	quantitative results wich are auto-
	given limits, method performance is una-	matically corrected for recovery
	cceptable for that compound in the sample.	and sensitivity validation and
	To overcome such difficulties of the	should be an integral part of the
	performance must be carried out.	quantification method.
	-Correction : not mentioned	-The use of Internal sensitivity
		standards is not essential, and the
		recovery of IQSs can alternatively
		be assessed by an external standa-
		rd method.
Smoothing	-Not mentioned	Smoothing process must be
		investigated as part of initial
		validation, and the parameters
		described in the method document
		and applied consistently.
Analytical time limit	-12-hour period of operation is recomme-	-Not mentioned.
	nded	

The purpose of this study is to identify the instrumental stability related to quality control, to find possibility to prolong the analytical time limit focused on ion abundance ratios.

Methods and Materials

Sample Preparation

Prior to analysis, calibration standard solutions with the different concentrations of PCDD/DFs (CSL,CS1, CS2 and CS3, Wellington Laboratories Inc.) were carefully transferred to the sample vials with equivalent volume, respectively.

Quantification and Identification

Identification and quantification of PCDD/DFs were performed by a high-resolution gas chromatograph (Hewlett Packard 6890 series) coupled with high-resolution mass spectrometer (Micromass, Autospec-Ultima). The mass spectrometer was operated in an electron impact mode and in the selected ion monitoring mode at a resolution R>10,000 (10% valley) using Masslynx 4.0 program. Separation was achived using a DB-5MS (J&W scientific; 0.25 mm ID × 0.25 μ m film thickness × 60 m length). The column oven temperature was programmed from an initial temperature of 160 to a final temperature of 310 (total run time 60 min).

Experiment Design

The calibration standards (CSs) of US EPA 1613 method are logarithmic fold-increasing concentration. Experiments were performed for 24 hours after SIR calibration. CSL and CS1 were injected every an hour,

but CS2 and CS3 were injected 3 hour-interval (eg: CS2, nonane, nonane, CS2...) for 24 hours after SIR calibration to prevent the effect of wrong quantitation by high concentration contamination.

Results and Discussion

The wide range differences of labelled CDDs/CDFs's concentration between sample spiking solution and standard solution could make the quantification errors. The concentrations of native CDDs/CDFs for calibration are logarithmic fold-increase, but the labelled compounds are always equal concentration. The changes of ion abundance ratios were checked under pre- and post- 12 hour period of operation, investigating the standard deviation (SD) of ion abundance ratios between the low concentration natives(\leq CS1) and high concentration natives(\geq CS2). The groups of \leq CS1 always showed wide ranges of SD but the groups of \geq CS2 showed narrow ranges. And the labelled CDDs/CDFs were always narrow ranges of SD and stable, too. Those results showed the higher possibilities for increasing the uncertainty factor during analysis under the isotope dilution method for dioxins.

Fig. 1. The changes of ion abundance ratios between CS1 and CS3 TCDD/Fs under the pre- and post- 12 hour period of operation.

During the 24-hour period of operation, the native group of \leq CS1 always showed outer-range ion abundance ratios at the 15% control limits until the 10-hour period of operation, but the native group of \geq CS2 and the labelled CDD/Fs were within the 15% control limit every time(Fig. 2). These results have no relationship to the numbers of chlorination. In conclusion, to determinate the higher concentration of dioxin contaminated sample, 24-hour period of operation can not affect the determination of dioxin levels which are nearly at the CS2 levels of concentration, and the analysis time can be prolonged within 24 hours. But to determinate the low concentration of dioxin contaminated sample, instrumental stability focused on ion abundance ratios must be kept on eye on for the isotope dilution method within 12- hour period of

operation. Besides, the concentrations of VER standard in US EPA method are not proper for method verification at the low level quality control.

Fig. 2. The changes of ion abundance ratios during the 24-hour operation.

4. References

- 1. US EPA (1994) Method 1613B, Tetra through octa-chlorinated dioxins and furans by isotope dilution HRGC/HRMS, Office of Water, Washington, D.C.
- 2. US EPA (1998) Method 8290A, Polyclorinated dibenzodioxins and polychlorinated dibenzofurans by HRGC/HRMS, Office of Water, Washington, D.C.
- 3. US EPA (1997) 40CFR Part 136 [FRL-5889-3], Guidelines establishing test procedures for the analysis of pollutants; EPA Method 1613; Final Rule.
- 4. Ambidge, P.F. et al. (1990) Chemosphere. 21,8, 999-1006