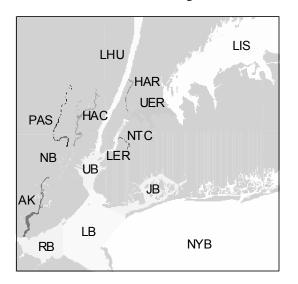
# CHLORINATED DIOXIN/FURANS IN NEW YORK HARBOR WATER, WASTEWATER, BIOTA, AND SEDIMENTS

Simon Litten<sup>1</sup>, Dawn McReynolds<sup>3</sup>, James Swart<sup>1</sup>, Frank Estabrooks<sup>1</sup>, Dale Hoover<sup>2</sup>, and Coreen Hamilton<sup>2</sup>

- 1 NYSDEC 625 Broadway, Albany, NY 12233
- 2 Axys Analytical Services, Sidney, BC, Canada
- 3 NYSDEC, Region 2, Hunters Point Plaza, 47-40 21<sup>st</sup> St, Long Island City, NY 11101


### Introduction

Contaminants in New York Harbor sediments increase the costs for maintaining the Port of New York/New Jersey. Sediment disposal criteria include chlorinated dioxins/furans as well as PCBs, DDT, and toxicity to marine organisms. This work reports dioxin concentrations and fingerprints from different media at sites throughout the system.

### **Methods and Materials**

Large volumes of water, from 200 to 6,000 L, were pumped through pre-fired glass fiber cartridge filters to concentrate suspended sediments. Bottom sediments were collected by Ponar or from sectioned cores. Striped bass (*Morone saxatilus*) and ribbed mussel (*Modiolus demissus*) were collected by rod and reel and hand picking respectively. Analyses for suspended and bottom sediments were by USEPA Method 1613. Biological materials were analyzed using USEPA Method 8290.

Data were evaluated against conventional quality control criteria of method blanks, duplicates, field blanks, and surrogate recovery. Use of WHO 98 Toxic Equivalency Factors (TEFs) makes some of the 17 congeners more important than others. The 505 samples noted here had total TEQs differing by less than 10% if non-detections were assigned values of zero or half the detection limit.



| Figure 1. Harbor Areas. |                   |     |                |  |  |
|-------------------------|-------------------|-----|----------------|--|--|
| Map                     | Name              | Map | Name           |  |  |
| AK                      | Arthur Kill       | NB  | Newark Bay     |  |  |
| HAC                     | Hackensack R.     | NTC | Newtown Creek  |  |  |
| HAR                     | Harlem R.         | NYB | New York Bight |  |  |
| JB                      | Jamaica Bay       | PAS | Passaic R.     |  |  |
| LB                      | Lower Bay         | RB  | Raritan Bay    |  |  |
| LER                     | Lower East R.     | UB  | Upper Bay      |  |  |
| LHU                     | Lower Hudson      | UER | Upper East R.  |  |  |
| LIS                     | Long Island Sound |     |                |  |  |

Specific locations of wastewater treatment plants (POTWs), combined sewer overflows (CSOs) treated landfill leachates, and tributaries are not indicated.

## **Results and Discussion**

Tables 1 to 4 show summary statistics by harbor area the number of samples, average total TEQ (WHO98), the standard deviation for the total TEQ, and the percent of total TEQ contributed by 2,3,7,8-TCDD for striped bass, ribbed mussel, sediments, and water. Not all harbor areas are equally represented. Since Table 3 (sediments) includes both surficial and core samples, the average depth is also indicated. Rows are ordered by average TEQ.

Table 1. Striped Bass, standard fillets

|                   |       | TEQ,      | TEQ,        | Avg.   |
|-------------------|-------|-----------|-------------|--------|
| Harbor Area       | Count | Avg. pg/g | StDev, pg/g | % TCDD |
| Long Island Sound | 7     | 1.9       | 0.88        | 42     |
| Lower Hudson R.   | 12    | 3.4       | 2.2         | 61     |
| New York Bight    | 9     | 3.5       | 3.6         | 52     |
| Raritan Bay       | 8     | 4         | 3.8         | 61     |
| Mid Hudson R.     | 6     | 5.4       | 1.6         | 51     |
| Upper Bay         | 27    | 7.6       | 14          | 59     |
| Newark Bay        | 5     | 29        | 30          | 87     |

#### Table 2. Ribbed Mussel

|             |       | TEQ,      | TEQ,      | Avg.   |
|-------------|-------|-----------|-----------|--------|
| Harbor Area | Count | Avg. pg/g | StDev, pg | % TCDD |
| Raritan Bay | 18    | 1.5       | 0.45      | 65     |
| Upper Bay   | 17    | 2.2       | 0.48      | 64     |
| Newark Bay  | 24    | 16        | 7.3       | 93     |
| Passaic R.  | 22    | 38        | 11        | 97     |

#### Table 3. Sediments

|                   | Avg.      |       | TEQ,      | TEQ,        | Avg    |
|-------------------|-----------|-------|-----------|-------------|--------|
| Harbor Area       | Depth, cm | Count | Avg, pg/g | StDev, pg/g | % TCDD |
| Long Island Sound | 4.1       | 21    | 23        | 10          | 11     |
| Lower Hudson R.   | 4.1       | 10    | 35        | 19          | 19     |
| Raritan Bay       | 8.7       | 15    | 40        | 20          | 28     |
| Harlem River      | 7.8       | 7     | 52        | 7           | 20     |
| Lower Bay         | 7         | 11    | 53        | 43          | 36     |
| Upper East R.     | 5.7       | 10    | 54        | 26          | 26     |
| Jamaica Bay       | 11.7      | 17    | 63        | 64          | 26     |
| Arthur Kill       | 10.8      | 13    | 120       | 126         | 31     |
| Upper Bay         | 9         | 35    | 276       | 880         | 20     |
| Passaic R.        | 5         | 3     | 454       | 66          | 77     |
| Newark Bay        | 8.7       | 23    | 591       | 1320        | 71     |
| Newtown Creek     | 10.4      | 11    | 876       | 474         | 6      |

Newtown Creek flows through an old industrial area in Queens and Brooklyn, NY. Two cores and a surficial sample all show three dominant congeners: 1,2,3,7,8-PeCDD; 2,3,4,7,8-PeCDF; and 1,2,3,4,7,8-HxCDF.

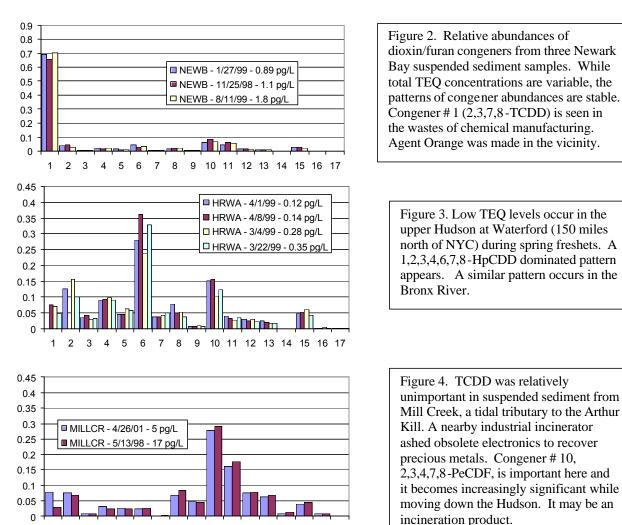
With certain exceptions (Newtown Creek for sediments and CSOs for water), the highest TEQ concentrations were seen in the western harbor areas of Passaic/Hackensack Rivers and Newark Bay. These areas were also those with the greatest contributions from 2,3,7,8-TCDD to total TEQ. The variability between harbor areas in average TCDD contribution was greatest in water samples and least in biological material. Table 6 relates the percent contribution of 2,3,7,8-TCDD by media to western harbor areas and all others.

|                           |       | TEQ,      | Avg         | Avg    |  |
|---------------------------|-------|-----------|-------------|--------|--|
| Harbor Area               | Count | Avg, pg/L | StDev, pg/L | % TCDD |  |
| New York Bight            | 6     | 0.0049    | 0.0015      | 23     |  |
| Long Island Sound         | 5     | 0.039     | 0.0052      | 6      |  |
| Lower Bay                 | 3     | 0.11      | 0.051       | 32     |  |
| Jamaica Bay               | 3     | 0.11      | 0.049       | 8      |  |
| Upper East R.             | 3     | 0.15      | 0.024       | 14     |  |
| Raritan Bay               | 3     | 0.17      | 0.03        | 30     |  |
| POTWs*                    | 60    | 0.24      | 0.47        | 5      |  |
| Urban tributaries*        | 11    | 0.28      | 0.53        | 9      |  |
| Major tributaries*        | 13    | 0.3       | 0.25        | 4      |  |
| Upper Bay                 | 4     | 0.31      | 0.1         | 33     |  |
| Treated landfill leachate | 4     | 0.32      | 0.29        | 18     |  |
| Lower East R              | 5     | 0.33      | 0.1         | 15     |  |
| Lower Hudson R.           | 12    | 0.55      | 0.26        | 19     |  |
| Mid Hudson R.             | 9     | 1.1       | 0.89        | 3      |  |
| Newark Bay                | 3     | 1.3       | 0.5         | 68     |  |
| Arthur Kill               | 3     | 1.6       | 1.1         | 53     |  |
| Hackensack R.             | 7     | 2.8       | 2.1         | 68     |  |
| Passaic R.                | 12    | 11        | 14          | 82     |  |
| CSO                       | 8     | 11        | 6           | 4      |  |

Table 5. Final POTW Effluents, water

•

|                  |       | Avg.      |             | Avg    |
|------------------|-------|-----------|-------------|--------|
| POTWs            | Count | TEQ, pg/L | StDev, pg/L | % TCDD |
| Low TEQ samples  | 52    | 0.15      | 0.088       | 8      |
| High TEQ samples | 8     | 1.0       | 0.65        | 2      |


Table 6. Average percent contributions of TCDD to total TEQ.

| Harbor Area    | Water | Sediments | Striped | Ribbed |
|----------------|-------|-----------|---------|--------|
|                |       |           | Bass    | Mussel |
| Western harbor | 68    | 60        | 87      | 95     |
| All others     | 15    | 21        | 56      | 65     |
| Total means    | 26    | 31        | 60      | 80     |

Water samples show the greatest variability from site to site in 2,3,7,8-TCDD contributions. TEQ fingerprints from ribbed mussels had the least. Striped bass and mussels also show greater relative dominance of 2,3,7,8-TCDD. Stated another way, elimination of 2,3,7,8-TCDD would have more impact on total TEQ in biota than in water.

Figures 2-4 illustrate congener patterns. The ordinates are the relative contributions of each congener to total TEQ and the abscissa is an ordering of congeners identified in Table 7.

| Table 7 | 1                   |       |                   |       |                     |
|---------|---------------------|-------|-------------------|-------|---------------------|
| Order   | PARAM               | Order | PARAM             | Order | PARAM               |
| 1       | 2,3,7,8-TCDD        | 7     | OCDD              | 13    | 2,3,4,6,7,8-HxCDF   |
| 2       | 1,2,3,7,8-PeCDD     | 8     | 2,3,7,8-TCDF      | 14    | 1,2,3,7,8,9-HxCDF   |
| 3       | 1,2,3,4,7,8-HxCDD   | 9     | 1,2,3,7,8-PeCDF   | 15    | 1,2,3,4,6,7,8-HpCDF |
| 4       | 1,2,3,6,7,8-HxCDD   | 10    | 2,3,4,7,8-PeCDF   | 16    | 1,2,3,4,7,8,9-HpCDF |
| 5       | 1,2,3,7,8,9-HxCDD   | 11    | 1,2,3,4,7,8-HxCDF | 17    | OCDF                |
| 6       | 1,2,3,4,6,7,8-HpCDD | 12    | 1,2,3,6,7,8-HxCDF |       |                     |



There are numerous sources of dioxin TEQ in the New York Harbor area. Some of the different sources have reproducible signatures and may have forensic use. If fingerprints are specific to sources and not functions of environmental degradation, they suggest a multiplicity of source types.

9 10 11 12 13 14 15 16 17

#### Acknowledgements

2 3

1

78

5 6

4

This work was supported by the Port Authority of New York/New Jersey and the Empire State Development Corporation through the Contaminant Assessment and Reduction Project (CARP). Significant assistance was given by the New York City Department of Environmental Protection, the United States Environmental Protection Agency, Region 2, and the United States Geological Survey.

172