PCDD/Fs IN ARCTIC MARINE AND FRESHWATER BIOTIC MEDIA

Zarema Amirova, Edward Kruglov, Elena Loshkina, Radic Khalilov

Environmental Research & Protection Centre, October Ave., 147, 450075, Ufa, Russia

Introduction

Study of the environmental and biosphere pollution of arctic areas has been carried out by northern countries for a long time but there is only a limited volume of data related to arctic regions of Russia¹. Since the previous AMAP assessment data on some wild animals have become available². The aim of this research was determination of PCDD/Fs concentration in fish and sea animals, estimation of the arctic biota background pollution as the first stage of studying biomagnification in food chains of the Russian Arctic and assessment of PCDD/Fs impact on the indigenous population.

Materials and Methods

Pool samples of muscles and fat of different types of fish served as an object of research (chum salmon, omul, broad whitefish, ide, arctic charr, inconnu, pike, whitefish), some species of seal (ringed seal, bearbed seal) and an individual sample of a three years old specimen of gray whale. The area of sampling presented the main semi-polar regions of Russia: Kola Peninsula (settlement Lovozero), downstream water of the Pechora river (settlement Oksino), Taimir Peninsula (settlements of Dudinka and Khatanga) and Chukotka Peninsula (settlements of Lavrenty and Kanchalan).

The samples were thawed and skinned. The muscle and fat were homogenized, subdivided into smaller replicate portions (100 g) and stored at -20° C prior to analysis. Extraction was carried out with methylene chloride-hexane-ethyl acetate and enrichment by defatting followed by separation on SiO₂-Al₂O₃-Carbopac C/Celite columns. Measurement was made by GC/HRMS in the EI mode. Quantification was performed by the isotope dilution internal standard method using carbon-13 congeners (CIL). Analysis of blank samples and reference material (cod liver) was made. Recoveries of internal standards added prior to injection ranged between 63-81%. Detection limits of for PNDD/Fs ranged between 0.1-0.5 pg/g lipid.

Results and Discussion

PCDD/Fs were detected in all fish samples (figure 1). The TEQ-WHO (fish) PÑDD/Fs ranged from 0.02 to 0.9 pg/g w.w. (1.31-14.0 pg/g lipids). The found values actually correspond to the levels in fish from other arctic countries. Thus, PCDD/Fs were found in pike and in whitefish (0.05-0.08 pg/g w.w.) from lakes in Sweden, in lakes of Norway values up to 8.29 pg/g w.w. were found². In the samples of atlantic salmon from the Varzuga river on Kola Peninsula, Russia increased PCDFs and especially PCBs content was found in comparison with samples from rivers of Norway, though there were no essential differences in TEQ PCDD/Fs of samples that was changing within the range of 29.2-34.6 pg/g lipids or 0.7-1.0 pg/g w.w.³. The new found levels are somewhat lower but both fish samples from Kola Peninsula also contain increased PCDD and particularly PCDFs levels unlike the samples from other regions of Russia. But in the sample of chum salmon from Chukotka TEQ PCDFs almost by 2 times exceeded of TEQ PCDDs also.

Region of sampling	S	Ν	% lipids	
Kola Peninsula (settlement Lovozero)	Whitefish	Coregonus lavaretus	10	0.9
	Pike	Esox lucius	12	0.6
Lower Pechora (settlement Oksino)	whitefish	Coregonus lavaretus	12	4
	Ide	Leuciscus idus	12	3.3
Taimir Peninsula (settlement Dudinka)	whitefish	Coregonus lavaretus	10	1.7
	omul	Coregonus autumnalis	10	2.9
Taimir Peninsula (settlement Khatanga)	whitefish	Coregonus lavaretus	10	2
	broad whitefish	Cerogonus nasus	10	1.6
Chukotka (settlement Kanchalan)	Inconnu	Stenodus nelma	10	0.8
	Broad whitefish	Cerogonus nasus	10	1.1
Chukotka (settlement Lavrentiya)	chum salmon	Oncorhynchus keta	10	0.5
	Arctic charr	Salvelinus alpinus	10	3.1

Table 1.	Pool samples of fish muscles, Russian A	Arctic

TEQ for fat of seal and whale from Chukotka makes 1-1.76 pg/g lipids, i.e. corresponds to the low limit of values found for ringed, harp and fur seal blubber from Arctic and Antarctic (1.4-29 pg/g fat TEQ), but corresponds to the values found in permanent fatty soil from Chukotka polluted with fat of sea animals -0.73 pg/g fat ⁴. PCDD/Fs content in muscles is increased by 2-4 times for different species converted to lipids (figure 2). PCDDs are prevailing over PCDFs (figure 3).

Region of sampling	Species of of animals		Ν	% lipids
Ringed seal	Phoca hispida	Muscles	8	5.4
Ringed seal	Phoca hispida	adipose tissue	8	98.8
Bearbed seal	Erignatus barbatus	Muscles	2	2.3
Bearbed seal	Erignatus barbatus	adipose tissue	2	86.2
Seal	Phoca largha	Muscles	10	4.5
Seal	Phoca largha	adipose tissue	10	83
Grey whale	Eschichtius gibbosus	Muscles	1	0.7
Grey whale	Eschichtius gibbosus	adipose tissue	1	42.5

Table 2 Pool samples of sea animals, Chukotka Peninsula, the settlement of Lavrenty

Acknowledment

This research has been carried out as a component part of the project of RAIPON/AMAP/GEF "Persistent Toxic Substances (PTS), Food Security and Indigenous Peoples of the Russian North". The authors express their gratitude to the Secretariat of AMAP for organization of this research in Russia, and to the staff of the Centre for Monitoring in Arctic and RAIPON for organization of sampling in difficult conditions of Russian Semi-Polar regions. This abstract is published upon the permission of AMAP Secretariat.

References

1.AMAP (1998), Arctic Assessment Report: Arctic Pollution Issues. Arcic Monitoring and Assessment Programm (AMAP), Oslo, Norway, xii+859 pp.

2.AMAP(2002), Arctic Assessment Report: Arctic Pollution Issues. Arcic Monitoring and Assessment Programm (AMAP), Oslo, Norway, xii+111 pp.

3.Becher G, Jensen A., Zubchenko A., Haung L., Hvidsten N., Johnsen B, Kashin E.(1998) Organohalogen Compounds, 39,427.

4. Oehme M., Papke O., Burkow I., Foshaug H., Muller-Beck H.(2002) Organohalogen Compounds, 56,445.

Figure 1. PCDD/Fs in different species of fish, TEQ-WHO, pg/g l.w.

Figure 2 TEQ-WHO PCDD/Fs in muscles and adipose tissue of marine animals

Figure 3. PCDDs and PCDFs in the samples of adipose tissues of marine animals