HISTORICAL TRENDS OF PBDD/Fs, PBDEs, PCDD/Fs AND DIOXIN-LIKE PCBs IN SEDIMENT CORES FROM TOKYO BAY

Jae-Won Choi, Susumu Fujimaki¹, Kimiyoshi Kitamura, Shunji Hashimoto, Hiroyasu Ito, Takeo Sakurai, Noriyuki Suzuki, Hiromitsu Nagasaka², Kiyoshi Tanabe, Shin-ichi Sakai, and Masatoshi Morita

National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan ¹ Application & Research Center, JEOL Ltd., 1-2 Musashino, Akishima, Tokyo 196-8558, Japan ² METOCEAN Environment Inc., 1334-5 Riemon, Ohigawa, Shizuoka 421-0212, Japan

Introduction

Considering the increased use of brominated flame retardants (BFRs), temporal trends of their occurrence in the environment and their toxicological effects are of concern because of their high lipophilicity and persistent properties. In Japan, the domestic use of BFRs increased 3.4-fold from 20,000 tons in 1986 to 67,250 tons in 2000. Tetrabromobisphenol A (TBBPA) and polybrominated diphenyl ethers (PBDEs) are the main types of domestic BFRs. Hexabromocyclododecane (HBCD), tribromophenol (TriBP) and Bis (pentabromophenyl) ethane are also used as BFRs¹. Heating PBDEs, TBBPA and other BFR-containing materials may lead to the formation of polybrominated dibenzo-*p*-dioxins (PBDDs) and dibenzofurans (PBDFs)². PBDD/F congeners have been identified during thermal degradation of BFRs³ and BFR-containing materials⁴ and are found in chimney depositions⁵ from textile processing plants and vehicle exhaust⁶.

We reported the concentrations and trends of PBDE and PBDD/F congeners in fat tissue of Japanese ⁷, but the data on the sources and detailed trends of PBDEs and PBDD/Fs in the environment were lacking. The temporal trends of the levels of PCDD/F and dioxin-like PCBs (DL-PCBs or Co-PCBs) in sediment cores from Tokyo Bay have been studied ^{8,9}. However, to date there are no sediment core data on PBDE and PBDD/F from Tokyo Bay which are needed to analyse temporal trends. In this study, we investigated the concentrations of PBDEs, PBDD/Fs, PCDD/Fs and dioxin-like PCBs in sediment cores from Tokyo Bay (1904-1999). As far as we know, this is the first report of PBDEs and PBDD/Fs in Tokyo Bay.

Materials and Methods

On January 2001 sediment cores were taken from Tokyo Bay at a position of $35^{\circ}34.063$ N latitude and $139^{\circ}54.319$ E longitude. An acryl pipe core sampler (diameter 10cm and length 100cm) was used to collect the sediment cores with 70cm depth were obtained. Sediment cores were sectioned in the laboratory into 2cm sections. All core sediments were stored frozen until dating and chemical analysis. Dating of the subsamples was based on the ²¹⁰ Pb method. The average sedimentation rate was estimated to be $0.177g/cm^2/yr$ and the average deposition rate was 1.207cm/yr considering the subsample conditions such as moisture content and density in a 2cmsection.

Analyses of PCDD/Fs and Co-PCBs in sediment cores were carried out using a manual for the analysis of sediments ¹⁰. PBDEs and PBDD/Fs were analysed according to the combinations and modifications of previous methods ¹¹ and guideline for PBDD/Fs ¹². Briefly, 10 grams of a dried sample was spiked with 13C-labeled surrogated PCDD/Fs, Co-PCBs, PBDEs and PBDD/F standards and extracted in a Dean-Stark type Soxhlet extractor using toluene as solvent.

Extracts were subjected to a sequential cleanup using multi-layered silica (for Cl-compounds) or a modified silica column (for Br-compounds) followed by a Florisil (for Br-compounds) and an active carbon-impregnated silica column (for both compounds). Analysis by HRGC/HRMS was performed using SIM with a JEOL-700K HRMS equipped with a Hewlett-Packard 6890 GC and a CP-Sil 88 (50m, 0.25 mm i.d., 0.2 μ m stationary phase), DB-5 (30m, 0.25 mm i.d., 0.25 μ m stationary phase), CP-Sil 8CB (25m, , 0.25 mm i.d., 0.12 μ m stationary phase) and a DB-5HT (15m, 0.15 mm i.d., 0.1 μ m stationary phase). The HRMS was operated in electron impact (EI) ionization mode at a resolution of R>10,000~12,000 (10% valley). For identification of PBDFs, possible interference from PBDE fragments was checked for in the PBDD/F fraction. After injection, identification and quantification of target compounds were done by an isotope dilution method using an XMS data acquisition system and a DioK data processing system (JEOL, Japan).

Results and Discussion

PCDD/Fs The results in pg/g dry wt of sediment cores are summarized in Table 1 and Figure 1. PCDD/F concentrations increased from the 1950s to the late 1970s, and then generally leveled off. The increases of PCDD/Fs were due to the high levels of HpCDD and OCDD, and the major contributor to these congeners was pentachlorophenol (PCP) as an impurity. For instance, due to the increased use of PCP during 1957~67⁹, the ratio of PCDDs to PCDFs rapidly changed from $3\sim4$ before its use (see 1904~1948 slices) to $6\sim7$ after its use (see 1953~1973 slices). Furthermore, due to the input of chloronitrofen (CNP) from the middle 60s, the ratio increased again during 1971-1982 because it contained 1368- and 1379-TeCDD as impurities. These temporal trends of PCDD/Fs are similar to previous results⁹. Considering the decrease in dioxin inventories from 7.4~7.6kg-TEQ in 1997 to 1.7kg-TEQ in 2001¹³, decreasing trends for chlorinated dioxins are expected in the future.

Co-PCBs The Co-PCB levels increased from 1946-48 to 1971-73, with a drastic increase from the middle of the 1950s. During 1977 to 1982, Co-PCB concentrations decreased to 8,000 pg/g and then generally leveled off. Since the major source of Co-PCBs is PCB formulations (particularly KC-300 and 400), there were no significant changes in the congener profiles from TeCBs to HpCB (Fig. 1). However, banned-PCB formulations in closed systems which are still operating should be observed to assess temporal trends or accidental exposures.

PBDEs Background levels of PBDEs were found during 1904-1941 (DeBDE was not analysed). The concentrations increased rapidly from 1946-48 to the surface layers in 1998-1999 and peaked in 1992-93 (78 ng/g, dry wt). The major congener during the whole period was DeBDE (BDE-209). BDE-47, a persistent congener in human fat tissue $(35.6\%)^{7}$ contributed only <0.2 % in the cores during 1980-1999. Congener profiles of PBDEs, particularly Tri-HpBDEs, changed from low to high during the whole period. Therefore, it seems that sediment cores strongly reflect the profiles of PBDEs produced in the market. In Japan, DeBDE use increased rapidly from 1986 (3,000 t), peaked in 1990 (10,000 t) and then decreased in 2000 (2,800 t). Comparing the historical use and the temporal trends of PBDEs in the sediment cores, the results indicate a lag of ~10 years between peak use and deposition in the sediments. The levels in surface layers and temporal trends of PBDEs were similar to those in sediment cores from Osaka Bay¹⁴.

PBDD/Fs For PBDD/Fs, congeners having no specifications were included as possible brominated dioxins and furans. The PBDD/F congeners, TeBDD, Te~HxBDF. PeBDD and HxBDD were below the detection limits or were interfered with by high backgrounds on the chromatograms during the whole period. The levels of PBDD/F increased significantly from late 1960s to the mid-1990s, and then generally leveled off (Table 1). The historical trends of

PBDD/Fs were similar to those of PBDEs. The concentrations were found in the order : HxBDF> TeBDFs > PeBDFs > TeBDDs. We do not have explanations for the potential sources of PBDD/Fs found in the sediment samples. No significant correlations between PBDF and PBDE levels were observed. Investigations of the potential contribution of other BFRs to the depositions are needed in the future.

Table 1. Concentrations of PBDEs, PBDD/Fs, PCDD/Fs and Co-PCBs in the sediment cores from Tokyo Bay

Compounds	1904-06	1916-18	1928-30	1939-41	1946-48	1953-55	1961-63	1967-69	1971-73	1974-76
PBDEs	14	10	30	NA ^a	914	2203	5414	5840	6353	7281
PBDD/Fs ^b	5.7	6.3	5.3	5.2	7.0	5.6	5.2	11.2	23.1	23.2
PCDD/Fs	552	763	1948	3314	4139	15911	36250	33333	23422	26632
Co-PCBs	121	709	1522	2928	4839	9441	13866	12595	12646	10472
Compounds	1977-79	1980-82	1983-85	1986-88	1989-91	1992-93	1994-95	1996-97	1998-99	
Compounds PBDEs	1977-79 11103	1980-82 25299	1983-85 37125	1986-88 57194	1989-91 59529	1992-93 78050	1994-95 68161	1996-97 75039	1998-99 76593	
Compounds PBDEs PBDD/Fs ^b	1977-79 11103 25.5	1980-82 25299 27.5	1983-85 37125 41.9	1986-88 57194 39.6	1989-91 59529 43.1	1992-93 78050 40.9	1994-95 68161 70	1996-97 75039 39	1998-99 76593 46.9	
Compounds PBDEs PBDD/Fs ^b PCDD/Fs	1977-79 11103 25.5 27260	1980-82 25299 27.5 21230	1983-85 37125 41.9 16632	1986-88 57194 39.6 14933	1989-91 59529 43.1 13674	1992-93 78050 40.9 13688	1994-95 68161 70 13693	1996-97 75039 39 13845	1998-99 76593 46.9 11211	

^a na : not analysed ^b : congener(s) below the limit of quantification (LOQ), above the limit of detection (LOD) were include

References

1. Kagaku Kogyo Nenkan. Flame Retardants; Kagaku Kogyo Nippo: Tokyo, Japan, June 2001; pp 367-369.

- 2. Thoma, H., Rist, S., Hauschulz, G., Hutzinger, O. Chemosphere 1986, 15, 2111-2113.
- 3. Thoma, H., Hauschulz, G., Knorr E., Hutzinger, O. Chemosphere 1987, 16, 277-285.
- 4. Sakai, S., Watanabe, J., Honda, Y., Takatsuki, H., Aoki, I., Furamatsu, M., Shiozaki, K. *Chemosphere*. 2001, *42*, 519-531.

5. Sedlak, D., Dumler-Gradl, R., Thoma, H., Vierle, O. Chemosphere 1998, 37, 2071-2076.

6. Haglund, P., Egeback, K. E., Jansson, B. Chemosphere 1988, 11, 2129-2140.

7. Choi, J-W., Fujimaki, S., Kitamura, K., Hashimoto, S., Ito, H., Suzuki, N., Sakai, S-I., Morita, M. *Environ. Sci. Technol.* 2003, *37*, 817-821.

8. Yamashita, N., Kannan, K., Imagawa, T., Villeneuve, D.L., Hashimoto, S., Miyazaki, A., Giesy, J.P. *Environ. Sci. Technol.* 2000, *34*, 3560-3567.

9. Yao, Y., Masunaga, S., Takada, H., Nakanishi, J. *Environ. Tox. Chem.* 2002, *21*, 991-998. 10. Ministry of the Environment, Tokyo, Japan. 2000. Methods of dioxin analysis for sediment (In Japanese).

11. Choi, J-W., Onodera, J., Kitamura, K., Hashimoto S., Ito, H., Suzuki, N., Sakai, S-I., Morita, M. (*in press*).

12. Ministry of the Environment, Tokyo, Japan. 2002. Guidelines of analytical methods for PBDD/Fs (In Japanese).

13. http://www.env.go.jp/chemi/dioxin/pamph/2003.pdf (In Japanese).

14. Sakai, S-I., Hayakawa, K, Okamoto, K., Takatsuki, H. Organohalogen Compd. 2002, 58, 189-192.

Figure 1. Historical trends of PCDD/Fs, Co-PCBs, PBDD/Fs and PBDEs in the sediment cores from Tokyo Bay