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Introduction
   The widely used flame retardants polybrominated diphenyl ethers (PBDEs) are persistent and
ubiquitous organic pollutants (POPs) that biomagnify and may have endocrine disrupting effects
similar to the effects observed for other halogenated compounds such as polychlorinated  and
polybrominated biphenyls (PCBs and PBBs), polychlorinated dibenzo-p-dioxins (PCDDs) and
polychlorinated dibenzofurans (PCDFs). Concern with the risks to human health, particularly
infants, is increasing due to observations of increasing PBDE concentrations in human breast
milk, although available data suggest that current levels of PBDEs are an order of magnitude
lower than those of PCBs.1,5 While PBDEs are in extensive production and use, existing data on
the receptor mediated toxicology of PBDEs is very limited, but there are indications of toxicity
via the estrogen, thyroid and Ah receptors (AhR).
Multivariate techniques are useful for data analyses of selected compounds, tested in a broad
battery of test systems where there is a large variation within some of the variables. There is a
renewed interest in Quantitative Structure Activity Relationships (QSARs) due to social and
political pressures, particularly with respect to reducing animal testing and the proposed changes
in EU chemical management regulations. QSARs are simplified mathematical representations of
complex chemical-biological interactions, and consequently QSAR predictions are potentially
more uncertain than the underlying test data. However QSARs are suitable for activity
estimation, and they can provide warnings/alerts about possible toxic properties of the test
compounds. QSARs can be used for decision support in early phases of product development to
regulatory decision-making such as in risk assessment and risk classification.
We have generated a principal component analysis (PCA) and quantitative structural activity
relationship (QSAR) for the AhR, using multivariate techniques, specific descriptors, and
biological data sets. This QSAR utilized experimentally generated PBDE data sets6, together with
an unpublished data set from the same laboratory, for 12 PBDEs capacities to bind and activate
the AhR in rat and human hepatocytes, human intestinal cells and to induce CYP 1A1, which
here was assayed as 7-ethoxyresorufin-O-deethylase (EROD) activity in cells from rainbow trout,
chick, rat and human.
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VolSurf and physico-chemical descriptors were generated for each of the compound structures for
which biological data was available and subsequently used to develop a partial least squares
regression based model. 2,3,7,8 TCDD was an outlier compared to the PBDEs, and  major
differences were apparent between the different cell line  EC50s (n=7) reflecting PBDE ligand
potencies in AhR, and cell line EROD % values (n=7) reflecting P450 CYP1A induction.
We have supported these multivariate analyses by utilising a homology model of AhR (based on
the ERα crystal structure)7, to examine the mode of binding of  representative  compounds in the
ligand-binding domain (LBD) of the  receptor model. Key commonalities  and differences
between the ligands have been observed.

Methods
1. Generation of PBDE biological data using  in vitro assays. The following PBDEs IUPAC No’s
28, 47, 66, 77, 85, 99, 100,119, 126, 153, 154, 183 were tested relative to 2,3,7,8 TCDD in the
following cell lines: RTL-W1: rainbow trout hepatoma; CEH: primary chick embryo hepatocytes;
PRH: primary rat hepatocytes; H4IIE: rat hepatoma; Caco-2: human adenocarcinoma; Hep G2:
human hepatoma, from which EC50’s and  EROD%, representing the highest EROD activities
from individual congeners compared with the activity of  the positive control 1nM TCDD.
Methodologies are described in Chen et al 2001.6   
2. To enable the evaluation and interpretation of this multivariate data the following multivariate
techniques (Umetrics, SIMCA-P v.10.0) and descriptors were used:
2. (i) Principal components analysis (PCA): a projection method that helps turn data into
information by providing a graphical overview (Similarity/Dissimilarity/Outliers) and
classification (Characterisation of groups).
2. (ii) Generation of VolSurf descriptors: VolSurf is a computational procedure to produce &
explore the physicochemical property space of a molecule starting from 3D interaction energy
grid maps. The information present in 3D grid maps is compressed into a few quantitative 2D
numerical descriptors using image analysis software. Each 3D map is considered as 3D image,
but the image compression process is made adding chemical knowledge. The pharmacokinetic
properties of a compound often depend on a variety of physicochemical parameters and therefore,
require a multivariate description. VolSurf descriptors quantitatively characterize size, shape,
polarity, hydrophobicity and the balance between them. VolSurf descriptors are fast to calculate
and are independent of alignment of molecules.8

2. (iii) Statistical tools: Partial Least Squares Regression (PLS) PLS assumes that there are a few
‘principal properties’ of the molecule which are directly related to the Y response, which in this
model are the EROD and EC50 values in different cell lines. Different linear combinations of all
the descriptors called ‘components’ are made, in turn, to describe each principal property. By
evaluating the regression coefficients of the PLS model in conjunction with  the variable
influence on the prediction, the relative importance of each  descriptor can be  identified.
3. Utilisation of a homology model of AhR based on the ERα crystal structure for docking studies
of PBDE, TCDD and PCB ligands in the hAhR model, using SYBYL biopolymer software and
visualised on a Silicon graphics Indigo 2 IMPACT 10000 Unix work station (Tripos Assocs. St
Louis, MO). 7
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Results and Discussion
The data sets were analyzed using PCA and PLS techniques. Initial analysis suggested the
presence of an outlier, 2,3,7,8-TCDD, which was subsequently excluded in the 3-component
model shown. In this way the PLS model R2X value improved from 0.4 to 0.77 (n=12,
RMSEE=15.71), with a good fit (R2Y=0.71) but poor predictability (Q2=0.16). The primary
variables summary plot of the model fit, (fig 1) show the success of the model fit for each of the Y
responses. Examination of the loadings plot (fig 2) highlight specific descriptors which were
positively correlated with the biological responses, in the top left corner, and negatively
correlated, in the bottom right corner.
Figure 1. Primary variables plot Figure 2. Loadings scatter plot

Taking the best-predicted biological parameter, the human hepatocyte cell line Hep G2 EC50, the
following Volsurf variable importance (fig 3) and coefficients (fig 4) plots were derived.
Figure 3. Variable Importance plot Figure 4. Coefficients plot: Hep G2 EC50
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The key variables were: The local interaction energy minima (Emin3) had a large negative
correlation; this represents the energy of interaction in kcal/mol of the best three local minima of
interaction energies between a water probe and the target molecule. Positive correlations were
observed for: Local interaction energy minima distances (D12), these are shape descriptors for
the distances between the best three local minima of interaction energies when a water probe
interacts with a target molecule; Hydrophobic integy moments (ID7 and ID8) which measure the
imbalance between the centre of mass of a molecule and the position of the hydrophobic regions
around them, and hydrogen bonding (HB7) capabilities of the ligands.
Less important negatively correlated variables were: capacity factors (Cw5 and Cw6), which
represent the amount of hydrophilic regions per surface unit, and amide responsive regions
(WAM7), suggesting that there is some indication that good acceptor abilities may not increase
the potency of a high affinity AhR ligands. Both in vitro6 and in silico7 docking studies suggest
different modes of binding in the AhR for TCDD compared to other ligands, and this is reflected
in the key Volsurf variables observed from the QSAR exercise.  2,3,7,8-TCDD appears to bind in
the AhR more potently by π-π stacking, while other less potent ligands such as PCBs and PBDEs
hydrogen bond with specific key amino acid residues triggering differing conformational shapes
of the receptor-ligand binding sites and energies to that of 2,3,7,8-TCDD. 7

Conclusions
There are many considerations for cell lines of choice when conducting in vitro assay screening.
In this study the human Hep G2 cell line was the best for predicting receptor binding and
CYP1A1 induction for PBDEs. Analyses of the Volsurf variable contributions together with
observed in silico modes of ligand binding in the AhR model allow additional insights into
receptor activation on a compound and chemical family specific basis as well as ligand
promiscuity and ligand-receptor cross talk when compared to other receptor studies. This is of
relevance to consideration of AhR and CYP 1A mediated xenobiotic species-specific interactions,
and a better understanding of the molecular mechanisms of PBDE pollutant toxicity and
endocrine disruption.
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