DIOXIN ASSESSMENT IN COAL-FIRED POWER STATIONS FROM SPAIN

G. Fernández-Martínez¹, J.M. López-Vilariño¹, P. López-Mahía¹, S. Muniategui-Lorenzo¹, D. Prada-Rodríguez¹, E. Abad² and J. Rivera²

¹Department of Analytical Chemistry. University of A Coruña. Campus da Zapateira s/n. E-15071 A Coruña. Spain. Fax: 34-81-167065. E-mail: purmahia@udc.es
²Mass Spectrometry Laboratory. Department of Ecotechnologies. IIQAB-CSIC. Jordi Girona 18-26. E-

²Mass Spectrometry Laboratory. Department of Ecotechnologies. IIQAB-CSIC. Jordi Girona 18-26. E-08034 Barcelona. Spain. Fax: 34-3-2045904. E-mail: jraeco@cid.csic.es

Introduction

Polychlorinated dibenzo-*p*-dioxins and furans (PCDD/Fs) enter the environment in ultra-trace amounts from various combustion and industrial sources and as chemical impurities in technical formulations. Some combustion processes have been widely studied: municipal waste and hospital incinerators or domestic heatings. However, scarce information about big heating furnaces as coal-fired power stations is available. The aim of this study was to evaluate the levels of PCDD/Fs emitted from five coal-fired power plants in Spain. Due to few stack national and european measurements available, this work is a first approximation to the actual levels of PCDD/Fs from coal-fired power stations in Spain.

Methods and Materials

In this work five Spanish power stations, representing approximately 45 % of the national coalfired power generation¹, were studied during 1997 and 1998. In general terms, these plants presented production capacities ranging between 80 and 350 MW and they burned different types of coals. Four plants (A-D) use a conventional coal-fired technology with electrostatic precipitators as pollution control device, while E is a pressurised fluidised bed power plant.

To perform the study, sampling process, extraction, clean-up and analysis fulfilled the minimum requirements described in the European Standard EN-1948:1996². Sampling was carried out with a stack gas sampler of filter/condenser method. Firstly, two samples were taken in the power station A (A-1 and A-2) to check if sampling process agrees with the European Standard EN 1948:1. Then a sample was collected in each power plant (A-3, B, C, D and E). Table 1 summarises information on each sample campaign.

Analytes were separated from the samples by Soxhlet extraction using toluene for 48 h. The clean-up was based on the classic liquid-solid adsorption chromatography and was performed with an automated Power PrepTM system using multi-layer silica, basic alumina and PX-21 carbon adsorbents pre-packaged in columns (FMS Inc., USA)³. Purified extracts were analysed by HRGC-HRMS on a GC 8000 series gas chromatograph (Carlo Erba Instruments, Italy) equipped with a CTC A200S autosampler and coupled to an Autospec Ultima mass spectrometer (Micromass, UK). Chromatographic separation was achieved with a DB-5 (J&W Scientific, USA) fused-silica capillary column (60 m x 0.25 mm ID x 0.25 mm). As confirmation, a DB-DIOXIN (J&W Scientific, USA) fused-silica capillary column (60 m x 0.25 mm) was employed when required⁴.

ORGANOHALOGEN COMPOUNDS Vol. 59 (2002)

Sample	Date	Volume (Nm ³ , 11% O ₂)	Particles (mg)	
A1	10/27/97	10.6	412	
A2	10/30/97	10.8	318	
A3	24/3/97	10.1	456	
В	3/4/98	7.3	421	
С	23/4/98	10.4	780	
D	31/3/98	11.4	257	
E	21/4/98	9.4	133	

Table 1. Sample collection campaign of PCDDs/PCDFs determination from coal-fired power stations.

Results and Discussion

Table 2 shows the concentrations, expressed as pg /Nm³, found in the different samples. The total i-TEQ levels ranged from 0.05 to 0.89 pg/Nm³. These values are far from those found in the emissions of municipal wastes and hospital incinerators (2-20 ng/Nm³) reported in previous inventories and below of the established limit of 100 pg i-TEQ/Nm³ adopted by many industrialised countries.

	A1	A2	A3	В	С	D	Е
2,3,7,8-TCDF	0.39	‡ (0,04)	0.47	0.80	0.25	0.1	0.35
1,2,3,7,8-PeCDF	‡ (0,16)	‡ (0,03)	‡ (0,06)	‡ (0,01)	‡ (0,05)	0.27	0.29
2,3,4,7,8-PeCDF	‡ (0,15)	‡ (0,04)	‡ (0,07)	\$ (0,12)	‡ (0,05)	0.37	0.17
1,2,3,4,7,8-HxCDF	‡ (0,09)	‡ (0,08)	0.33	0.97	‡ (0.27)	0.86	0.34
1,2,3,6,7,8-HxCDF	\$\\$(0,10)\$	‡ (0,08)	0.13	0.46	‡ (0.13)	0.48	0.13
2,3,4,6,7,8-HxCDF	‡ (0,11)	‡ (0,09)	0.30	0.28	‡ (0.20)	0.77	0.27
1,2,3,7,8,9-HxCDF	‡ (0,15)	‡ (0,11)	‡ (0,12)	\$ (0,12)	‡ (0,109	0.12	‡ (0,08)
1,2,3,4,6,7,8-HpCDF	‡ (0.75)	0.41	1.00	1.66	0.69	2.72	1.07
1,2,3,4,7,8,9-HpCDF	‡ (0,15)	‡ (0,24)	0.29	0.22	‡ (0,16)	1.16	0.3
OCDF	‡ (2.95)	2.07	2.38	2.08	0.89	7.93	2.35
2,3,7,8-TCDD	‡ (0,07)	‡ (0,06)	0.13	‡ (0,24)	‡ (0,02)	‡ (0,02)	‡ (0,05)
1,2,3,7,8-PeCDD	‡ (0,33)	‡ (0,30)	‡ (0,09)	‡ (0,08)	0.32	‡ (0,22)	‡ (0,09)
1,2,3,4,7,8-HxCDD	‡ (0,15)	‡ (0,11)	‡(0,11)	‡ (0,14)	‡ (0,09)	0.19	‡ (0,079
1,2,3,6,7,8-HxCDD	\$ (0,20)	‡ (0,14)	0.47	0.4	0.22	0.45	0.57
1,2,3,7,8,9-HxCDD	\$ (0,18)	‡ (0,13)	‡ (0,10)	‡ (0,13)	0.21	0.37	0.32
1,2,3,4,6,7,8-HpCDD	48.51	2.48	1.94	1.65	1.26	2.17	2.92
OCDD	385.10	19.54	10.02	9.59	7.00	8.75	0.22
Total i-TEQ	0.89	0.05	0.35	0.27	0.29	0.34	0.62

Table 2. PCDD/F concentrations (pg/Nm³) in emissions of coal-fired power stations.

‡ Not detected or quantifed. Detection limits are presented in brakets.

All plants show similar i-TEQ over 0.3 pg/Nm³, except the plant E and the first sampling of plant A that present higher levels: 0.62 and 0.89 pg/Nm³ respectively. However no clear conclusions about the influence of the combustion conditions can be extracted, because levels determined in the three samplings on plant A are affected by a strong source of variation. In comparison, our values are lower than those reported by Riggs *et al.*⁵ from U.S coal-fired power plants ranged between 0-200 pg/Nm³. These emissions and their emissions factors (Figure 1) are much lower than those reported for less efficient combustions, like heating furnaces or industrial sources, estimated between 1.6-2500 ng i-TEQ/kg coal⁶. The reasons of low PCDD/Fs levels in coal combustion emission in comparison with waste combustion seem to be related with SO₂ and trace metals levels and combustion conditions, specially temperature combustion which is usually higher in power generation processes.

Figure 1. Estimated emission factors in pg i-TEQ/ kg coal.

The absolute concentrations of D power plant are also the highest for most of isomers, while the plant C presents the lowest contents. Octachloro-substituted isomers, both furans and dioxins, are the most abundant. OCDD concentrations range from 7 to 10 pg/Nm³, except for the plant E that shows very low levels. The OCDF present levels between 2 and 4 pg/Nm³, in this case the plant D shows a peak of 8.75 pg/Nm³. Hepta-substituted compounds are the second family on importance, remaining compounds are in lower concentrations and even the 2,3,7,8-TCDD has been only detected in one of the samples taken in the plant A.

Figure 2 shows the estimated annual PCDD/Fs emissions from studied coal-fired plants. These data can be used to estimate the annual PCDD/Fs from coal-fired power generation in 0.86 g i-TEQ/year in Spain. These data present a similar magnitude to those reported in the European Dioxin Emission Inventory⁷. This document reported ranges of concentration for different countries, for example: 1.5-2.5 g i-TEQ/year in Belgium, 0.1-0.13 g i-TEQ/year in Switzerland, 5 g i-TEQ/year in Germany, 1.44-2 g i-TEQ/year in Denmark, 2 g i-TEQ/year in France. The value assigned for Spain is 3.9 g i-TEQ/year, but the origin of this value is not sufficiently explained and it can be probably based in overestimated emission factors from less efficient combustions.

ORGANOHALOGEN COMPOUNDS Vol. 59 (2002)

Figure 2. Estimated annual PCDD/Fs in studied coal power plants.

Acknowledgements

This study was supported by ENDESA. The technical and human resources provided by the Environmental Service at C.T. As Pontes for development of this project are gratefully acknowledged.

References

- 1. ITGE (Instituto Tecnológico Geominero de España), http://www.itge.mma.es
- 2. Abad E., Caixach J., Rivera J. (1997) Chemosphere 35, 453.
- 3. Abad E., Sauló J. Caixach J., Rivera J. (2000) J. Chromatog. A, 893, 397.
- 4. Abad E., Caixach J., Rivera J. (1997) J. Chromatog. A 786, 125.
- 5. Riggs K.B, Brown T.D., Schrock M.E. (1995) Organohalogen Compounds, 24:51-54.
- 6. Moche W., Thanner G. (2000) Organohalogen Compounds, 46:295-297.
- 7. European Comission. Directorate General for Environment (DGENV). (2000) The European Dioxin Emision Inventory. Stage II. Vol 3.