DEVELOPMENT OF SIMPLE AND RAPID PURIFICATION METHODS FOR BIOANALYTICAL DETECTION OF DIOXINS

Mitsunobu Okuyama¹, Wakako Takeda¹, Takako Anjo¹, Yasuhiko Matsuki¹, Shinjiro Hori², Norihiro Kobayashi³, Junichi Goto⁴, Junko Ito⁵, Atsunori Sano ⁶, Tomonori Matsuda ⁶

¹Food & Drug Safety Center, Hatano Research Institute, 729-5, Ochiai, Hadano, Kanagawa 257-8523, Japan ²Osaka Prefectural Institute of Public Health, 1-3-69, Nakamichi Higashinari-ku, Osaka 537-0025, Japan ³Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan. ⁴Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan

⁵Laboratory of Biochemistry, Sagami Woman's University, 2-1-1, Bunkyo, Sagamihara 228-8533, Japan ⁶Wako Pure Chemical Industries LTD., 5-13, Nihonbashi-Honcho 4-Chome, Chuo-ku, Tokyo 103-0023, Japan

Introduction

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are organochlorinated pollutants found in various environmental matrices. These compounds are known to be bioaccumulative exhibiting a variety of toxic effects including tumor promotion, immunotoxicity, reproductive toxicity and endocrine disruption. In consequence PCDD/Fs are recognized as a potential threat to human health and to be a serious ecological issue.

High-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) has conventionally been used for detection of PCDD/Fs because of the advantages of separating the numerous congeners and simultaneous quantification of each component with reasonable accuracy and precision. However, the HRGC/HRMS procedures require time-consuming and expensive pretreatment method to extract a trace amount of the target compounds.

Thus, several rapid and high-throughput bioanalytical methods, involving enzyme-linked immunosorbent assay (ELISA)^{1,2} and AhR-dependent assay³⁻⁵, have recently been developed. These procedures could be much more feasible, cheaper and suitable for routine monitoring of potential toxicity due to PCDD/Fs in various samples with a reasonably low detection limit. However, a proper sample pretreatment is still necessary to avoid interference particularly due to lipophilic substance: that masks the target compounds and prohibit to be bound by antibody or receptor.

In this study, we established simple, rapid and inexpensive purification procedures for an ELISA of PCDD/Fs using a solid phase extraction (SPE) cartridge, Wakogel P-29. Moreover, we attempted to develop an immunoaffinity extraction method that could allow even simpler and faster pretreatment for bioanalyses of PCDD/Fs. To achieve this aim, previously generated monoclonal antibodies, whose cross-reactivity to dioxin congeners was corresponding to the toxic equivalence factors (TEF), were employed for preparing immunosorbent.

Materials and Methods

Chemicals

PCDD/Fs congeners were purchased from Wellington Laboratories. SPE cartridges, Wakogel P-29 and abselut NEXUS, were purchased from Wako Pure Chemicals and Varian, respectively. Cyanogen

BIOANALYSIS

bromide (CNBr)-activated Sepharose 4FF was obtained from Amersham Pharmacia Biotech, and Affi-Gel 10 was from Bio-Lad.

Clean-up Procedure for ELISA

Fat was saponified with 1 mol/L KOH and extracted with n-hexane. The organic layer was washed with H_2SO_4 until the sulfuric acid layer had become to be clear. The extract was loaded to Wakogel P-29 cartridges, which were washed with n-hexane and then eluted with hexane/benzene (3:1). After addition of Triton X-100 (0.1% in MeOH; 25μ L) to the effluent, the solvent was evaporated and the residue was dissolved in PBS, then the following ELISA performed.

ELISA

The ELISA was carried out using monoclonal antibody D9-36 as described previously². Briefly, horseradish peroxidase-labeled hapten, the monoclonal antibody and standard dioxin or the sample prepared as above were added to the second antibody-coated wells in a 96-well microtiter plate. After overnight incubation at 4 $^{\circ}$ C, the wells were washed with PBS, and the bound enzyme activity was measured using H₂O₂ and o-phenylenediamine as a substrate.

Preparation of Immunosorbent and Affinity Column

A solution of the IgG fraction (monoclonal antibody D2-37, D9-36 or D35-42)² was added to the CNBr-activated Sepharose 4FF or Affi-Gel 10. After gentle stirring of the mixture overnight at 4?, remaining reactive groups of the gel were blocked by addition of 0.1 mol/L Tris-HCl buffer (pH 8.0). Then the gel was washed serially with 0.1 mol/L acetate buffer (pH 4.0), 95% MeOH, water and PBS, and a portion of the resulting gel (1 mL) was packed into a disposable column.

Immunoaffinity Extraction-Based Pretreatment

Fat specimen was treated as described above, and the residue was dissolved in PBS and applied to the immunoaffinity column. After washing serially with PBS, water and 10% MeOH, PCDD/Fs were eluted with 95 % MeOH. This fraction was diluted with water to reduce the MeOH concentration to be less than 60 %, added to the NEXUS cartridge and washed with 90% MeOH. Then PCDD/Fs fraction was eluted with acetone, and submitted to the ELISA.

GC/MS Measurement

After purification by Wakogel P-29, PCDD/Fs in the purified extract were determined by HRGC/HRMS on a Hewlett Packard 5890-II gas chromatograph-JEOL JMS-700 (Mstation) mass spectrometer at a resolution of R=10000 in the selected ion monitoring mode (SIM).

The HRGC/HRMS conditions were as follows: column, Supelco 2331 60 m x 0.25 mm i.d., 0.25 µm thickness; column temperature program, 130° (2 min), 130-200° at 15°/min, 200-260° at 3?/min, 260 °C (30 min); carrier gas, He; column head pressure, 168 Kpa; injection temperature, 270°; injection volume, 2 µL (splitless). The MS conditions: detection mode, EI; ion source temperature, 270 ; ionizing current, 600 µA; ionizing energy, 38 eV; accelerating voltage, 10 KV. The results were corrected for the recovery of $^{13}\mathrm{C}_{12}$ -labeled internal standards.

Results and Discussion

Saponification of the fat with KOH and washing with H₂SO₄ were essential for developing clean-up procedures of dioxins. After the purification of the extract using Wakogel P-29 cartridge, we could obtain reasonable assay values for PCDD/Fs using the ELISA, which were in good correlation with the values obtained with the GC/MS procedure (fig.1). Recoveries of 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD and

2,3,4,7,8-PeCDF through the clean-up procedure (determined by the GC/MS) were 64 %, 75 % and 85 %, respectively. In the case of the immunoaffinity extraction-based pretreatment, the recovery of 2,3,7,8-TCDD from fat sample (measured by the ELISA) was about 70 %.

Conclusion

It has been shown that the present clean-up procedure using Wakogel P-29 is useful for developing an ELISA system which is available as a simple, rapid and inexpensive method for screening and monitoring of PCDD/Fs. The immunoaffinity extraction using monoclonal antibodies equipping high affinity to toxic dioxin congeners is expected to be a novel pretreatment procedure that is available not only for ELISAs but also for the AhR-dependent assays.

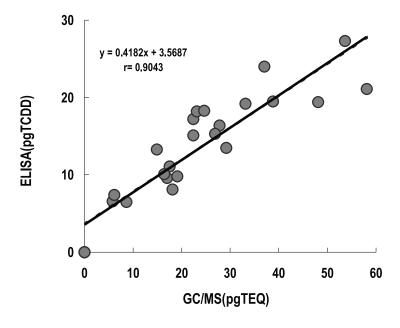


Fig.1 Correlation between GC/MS and ELISA for Fat Samples

Acknowledgements

This work was supported in part by the Health Research Grants from the Ministry of Health, Labor and Welfare of Japan.

BIOANALYSIS

References

- Sugawara, Y., Gee, S.J., Sanborn, J.R., Gilman, S.D., Hammock, B.D. (1998) Anal. Chem., 70, 1092-1099.
- 2. Okuyama, M., Endo, W., Anjo, T., Kambegawa, A., Kobayashi, N., Goto, J., Matsuki, Y. (2001) Organohalogen Compounds, 54, 77-80.
- 3. Hiraoka, M., Kobayashi, Y., Ogiwara, K., Nakanishi, T., Campbell, T.C., Wheelock, G.D. (2001) Organohalogen Compounds, 53, 401-404.
- 4. Kayama, F., Hamamatsu, A., Sagisaka, K., Brown, D., Clark, G., Suzuki, T. (2001) Organohalogen Compounds, 54, 48-50.
- 5. Nagy, S.R., Sanborn, J.R., Hammock. B.D., Denison, M.S. (2002) Toxicol. Sci., 65, 200-210.