CHLORINATION EFFECTS ON PCBzs, PCPhs, PCDD/DFs AND PAHs BY DIOXIN-FREE FLYASH AND UNBURNT HYDROCARBON: 2. EFFECT OF HCL CONCENTRATION

Takumi Takasuga¹, Norihito Umetsu¹, Tetsuya Makino² and Katsuya Tsubota²

¹Shimadzu Techno-Research Inc., 1, Nishinokyo-Shimoaicho, Nakagyo-ku, Kyoto 604-8436, Japan ²Japan PVC Environmental Affairs Council, Uchisaiwaicho 2-1-1, Chiyoda-ku, Tokyo 100-0011, Japan

Introduction

Formation of polychlorinated dibenzo-*p*-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during municipal waste incineration was discovered in 1977¹. The presence of these compounds in incinerator fly ash has led to laboratory-scale modeling of the formation process. Recent reviews summarized the most important trends and results²⁻³. Our earlier report we demonstrated the formation of dioxin during burning of newspaper, kerosine, paraffin, and plastics with dioxin-free flyash⁴. In general practice, HCl was formed from the NaCl during heating of NaCl which contain waste along with clay. In order to understand the formation of dioxins from HCl, baseline study is needed for the confirmation. Not only dioxins, but also chlorinated chemicals (CCs) such as chlorobenzenes (PCBzs) and chlorophenols (PCPhs) also evolved during heating of dioxin-free flyash catalytic reaction. Besides, the burning experiment suggested that polycyclic aromatic hydrocarbons (PAHs) also a major chemical evolved during these complex reactions. In addition, the presence of metal chloride in the fly ash and hydrocarbons in the gas stream is the major contributors for the increased dioxin chlorinated compounds and concentration.

With continued research activities on fly ash samples, in present study we conducted research on dioxin-free fly ash samples as a catalyst for the dioxin formation with the presence hydrogen chloride (HCl) at different concentrations. Further, the homologue pattern, chlorine percentage, of PCBzs, PCPhs, PCDD/DFs and PAHs has been determined and evaluated.

Materials and Methods

Dioxin-free fly ash

Fly ash was obtained from the electrostatic precipitator of municipal solid waste incinerator and subjected into thermal heat of 500 °C for 2 hours with the presence of nitrogen stream that removed 99.99 % of dioxin. This dioxin-free fly ash was analyzed to confirm the levels of organic compounds as a catalyst.

Experiment

The experiment was conducted using experimental apparatus shown elsewhere⁴. Briefly, the paraffin powder of 1 g was dusted 100 times with 10 mg for the duration of 2 hour. CO, CO_2 , O_2 were also monitored simultaneously during the entire period of experiment. The hydrogen chloride concentration was changed as 10 ppm, 50 ppm, 100 ppm, 500 ppm and 1000 ppm in the paraffin powder. The experiment also conducted with dioxin-free paraffin powder and newspaper. Extraction and cleanup procedures and analysis were same as JIS K 0311 methods established by our team with minor modifications⁴.

HRGC/HRMS analysis

The identification and quantification of PCDD/DFs were performed using Micromass Autospec Ultima Additionally chlorobenzenes, (PCBzs) and chlorophenols (PCPhs) and 16 compounds PAHs were analyzed in HRGC-HRMS at a resolution of > 10, 000 using ¹³C-internal standards. The concentrations of PCBzs and PCPhs and PCDD/DFs were ng/g while, PAHs expressed as mg/g unless otherwise specified.

Table 1. Formation of PCBzs, PCPhs, PCDDs, PCDFs, PAHs and TEQ with varied concentrations of HCl1 and

Sample	Paraffin	Paraffin	Paraffin	Paraffin	Paraffin	Nothing	Paraffin	Paraffin	
HCl1 concentration stream	10 ppm	50 ppm	100 ppm	500 ppm	1000 ppm	100ppm	100ppm	1000ppm	
					••				
Chlorobenzene (Cl%/MW)									
MoCBZ (0.316/112.5)	120	490	130	23	200	10	10	85	
DiCBZ (0.483/147)	2600	16000	8500	4400	8800	230 ^a	450 ^a	670 ^a	
TrCBZ (0.587/181.5)	1800	22000	33000	20000	34000	22	10	95	
TeCBZ (0.657/216)	830	1400	20000	25000	33000	10	20	21	
PeCBZ (0.705/250.5)	250	4500	7300	17000	20000	10	10	10	
HxCBZ (0.747/285)	170	920	1300	4800	4300	59	130	130	
PCBzs	5800	58000	70000	71000	100000	310	600	1000	
Cl%	55	58	61	64	63				
Chlorophenols (Cl%/MW)									
MoPCPhs (0.276/128.5)	5100	15000	37000	2200	2600	100	150	600	
DiPCPhs (0.436/163)	1300	14000	47000	6800	5500	200	250	1200	
TrPCPhs (0.539/197.5)	330	11000	30000	24000	28000	100	100	520	
TePCPhs (0.612/232)	110	7100	26000	27000	31000	130	100	570	
PeCPCPhs (0.666/266.5)	150	1500	4200	9500	9800	120	100	270	
PCPhs	7000	49000	144000	70000	77000	450	400	3200	
Cl%	33	44	45	57	57				
PCDDs (Cl%/MW)									
TeCDDs (0.441/322)	6	250	290	290	250	0.006	0.0099	0.39	
PeCDDs (0.498/356.5)	2.5	210	310	630	980	0.006	0.009	0.096	
HxCDDs (0.545/391)	0.86	150	240	830	1100	0.0097	0.016	0.1	
HpCDDs (0.584/425.5)	0.3	53	86	570	790	0.0095	0.017	0.065	
OCDD (0.617/460)	0.17	13	18	250	320	0.014	0.017	0.12	
PCDDs	10	680	940	2600	3400	0.046	0.069	0.77	
Cl%	47	50	50	54	54				
PCDFs (Cl%/MW)									
TeCDFs (0.464/306)	94	1800	2400	2900	2900	0.016	0.03	5.0	
PeCDFs (0.521/340.5)	29	1000	1400	2500	2900	0.016	0.025	0.72	
HxCDFs (0.568/375)	5.5	390	610	1500	1400	0.014	0.021	0.17	
HpCDFs (0.607/409.5)	0.94	130	200	710	730	0.01	0.012	0.089	
OCDF (0.640/444)	0.3	21	29	180	170	0.01	0.01	0.067	
PCDFs	130	3300	4600	7800	8100	0.056	0.088	6.0	
Cl%	48	50	50	52	52				
Sum PCDD/DFs	140	4000	5540	10000	12000	7.4	28	7200	
TEQ	1.8	62	99	170	170	0.12	0.2	95	

¹hydrochloric acid; * indicates mg/g concentration levels;^adenotes blank background concentrations.

PCBz, PCPhs, PCDDs, PCDFs, TEQ and PAHs respectively, polychloro benzene, polychlorophenols,

polychlorinated dibenzo-p-dioxins, dibenzofurans, toxic equivalency and polycyclic aromatic hydrocarbons.

Results and Discussion

Very drastic increase of PCBzs, PCPhs, PCDDs, PCDFs, TEQ and PAHs with the presence of dioxin-free fly ash has been noticed at 10 to 50 ppm HCl concentrations along with paraffin powder and newspaper (Tables 1 and 2). Considerably, more than 100 to 1000 ppm HCl concentrations, there was not much effect in increased formation of any the chemicals and their homologue pattern we determined (Table 1). We also conducted the 3 black test with the absence of flyash but with and without presence of paraffin at 100 and 1000 ppm HCl concentrations. The results provided very less pronounced increase of all the chemicals we determined except dichlorobenzenes which showed slightly greater levels and these trend clearly shows the external contamination (Table 1).

concentrations of HCl and dioxin-free flyash as a catalyst with the presence of newspaper .								
Sample	Newspaper	Newspaper	Newspaper	Newspaper	Newspaper			
HCl1 concentration stream	10 ppm	50 ppm	100 ppm	500 ppm	1000 ppm			
Chlorobenzene (Cl%/MW)								
MoCBZ (0.316/112.5)	330	290	380	120	130			
DiCBZ (0.483/147)	3600	7200	1900	4600	2600			
TrCBZ (0.587/181.5)	2600	13000	11000	9800	4200			
TeCBZ (0.657/216)	1300	9200	13000	10000	6500			
PeCBZ (0.705/250.5)	470	4600	8100	8000	7500			
HxCBZ (0.747/285)	140	1300	2400	2900	3800			
PCBzs	8400	36000	37000	35000	25000			
Cl%	55	60	64	63	65			
Chlorophenols (Cl%/MW)								
MoPCPhs (0.276/128.5)	16000	5800	6500	9200	7400			
DiPCPhs (0.436/163)	2200	4500	7400	10000	9400			
TrPCPhs (0.539/197.5)	550	10000	18000	18000	35000			
TePCPhs (0.612/232)	180	7500	10000	11000	7400			
PeCPCPhs (0.666/266.5)	55	1700	2800	3500	4200			
PCPhs	19000	30000	45000	52000	63000			
Cl%	31	50	51	50	51			
PCDDs (Cl%/MW)								
TeCDDs (0.441/322)	37	62	61	57	32			
PeCDDs (0.498/356.5)	28	130	200	140	98			
HxCDDs (0.545/391)	16	210	350	350	290			
HpCDDs (0.584/425.5)	6.7	170	320	380	480			
OCDD (0.617/460)	3.5	140	290	450	910			
PCDDs	91	710	1200	1400	1800			
Cl%	49	55	56	57	59			
PCDFs (Cl%/MW)								
TeCDFs (0.464/306)	95	730	1100	800	490			
PeCDFs (0.521/340.5)	35	530	840	730	510			
HxCDFs (0.568/375)	11	310	530	510	460			
HpCDFs (0.607/409.5)	2.8	170	320	390	470			
OCDF (0.640/444)	0.34	53	130	210	420			
PCDFs	140	1800	2900	2600	2400			
Cl%	49	52	52	53	56			
Sum PCDD/DFs	230	2500	4141	4100	4200			
TEQ	2.6	36	57	51	44			

Table 2. Formation of	PCBzs, PCPhs,	PCDDs, PCDFs,	PAHs and	TEQ with varied
concentrations of HCl	and dioxin-free	e flyash as a cataly	vst with the	presence of newspar

¹hydrochloric acid; * indicates mg/g concentration levels.

PCBz, PCPhs, PCDDs, PCDFs, TEQ and PAHs respectively, polychloro benzene,

polychlorophenols, polychlorinated dibenzo-*p*-dioxins, dibenzofurans, toxic equivalency

and polycyclic aromatic hydrocarbons.

Isomer profiles of chlorinated compounds was found similar at all HCl concentration levels (results not shown). For example, dichlorophenols had no influence of HCl concentration dependent variations especially for the 23-, 24-, 25, 26-, 34- and 35-DCPhs. These results indicated that *ortho* and *para*-orient reaction in chlorophenol ring might be a possible explanation. On the whole, paraffin powder increased greater formation of all target chemicals rather than newspaper by 2 to 10 orders particularly PCBzs, PCPhs and PAHs.

Concentrations of PAHs were several hundred times greater than chlorinated chemicals. This may be due to the greater proportion of hydrocarbons in gas stream of the test apparatus rather than chlorinated compounds. Particularly, naphthalene, acenaphthalenes, phenanthrene concentrations was predominated, while, acenaphthene and dibenzo[a,h]anthrathene showed lower concentration levels (Table 3). Maximum increase of concentrations have been observed with the HCl concentrations of 10 to 50 ppm and then remained constant. Comparatively, paraffin powder produced 30-times greater concentrations of PAHs than newspaper (Table 3).

Based on the results it can be explained that chlorinated compounds formation was greatly influenced by the catalytic reaction of flyash. Furthermore, presence of hydrocarbons may lead to form chlorinated compounds at some extent. Therefore, flyash is responsible in the formation of analyzed chemicals rather than HCl source. Particularly the "active site control type reaction" in fly ash is a critical point for the formation of chlorinated compounds. For example, in the heating chamber, the

ORGANOHALOGEN COMPOUNDS Vol. 56 (2002)

Table 3. Concentrations of PAHs* during burning of paraffin powder/newspaper with HCT and dioxin-free flyash as a catalyst.										
HCl1 concentration stream	10 ppm		50 ppm		100 ppm		500 ppm		1000 ppm	
Fly ash	Presence									
Sample	Paraffin	Newspaper								
Naphthalene	9,000	550	11,000	910	8,400	960	8,000	940	13,000	770
Acenaphthylene	6,700	96	3,600	390	6,700	710	6,200	380	3,700	320
Phenanthrene	4,500	190	3,400	250	4,100	480	4,600	250	4,200	210
Pyrene	2,500	78	1,900	160	2,300	99	2,600	150	2,200	120
9H-Fluorene	1,800	7	1,700	100	1,800	140	1,700	100	1,900	76
Fluoranthene	1,600	130	1,500	140	1,500	280	2,100	140	1,700	110
Anthrathene	1,400	15	1,100	61	1,500	130	1,600	44	1,400	36
Benzo[a]pyrene	1,100	15	580	31	1,100	67	1,300	15	670	3
Benzo[a]anthrathene	700	8	540	36	620	61	690	33	640	26
Benzo[g,h,I]perylene	520	22	320	24	440	50	550	23	390	14
Indeno[1,2,3-cd]pyrene	430	19	290	25	370	53	480	24	360	18
Benzo[b]fluoranthene	410	29	230	40	360	86	430	41	300	34
Crysene	350	21	240	38	320	75	350	38	320	32
Acenaphthene	230	2.8	170	5.8	220	11	240	5.5	230	3.8
Benzo[k]fluoranthene	240	6	150	16	220	30	260	15	210	12
Dibenzo[a,h]anthrathene	37	0.96	21	3.5	30	6.4	36	3.3	29	2.8
Sum PAHs	31,517	1,190	26,741	2,230	29,980	3,238	31,136	2,202	31,249	1,788

*Concentrations on ng/sample used;¹hydrochloric acid; The values rounded for two significant digit.

flyash was greatly attracted by hydrocarbons rather than HCl. The time of reaction by hydrocarbons might comparatively longer than chlorinated compounds. Consequently, heavier chlorinated compounds had less chance to contact with active reaction site in flyash. Basically in flyash active site, the Deacon type of reaction can be expected;

$$2R-H + 2[CuCl_{2} \text{ or } FeCl_{3}] + (O) \text{ towards } 2R-Cl + 2[CuCl \text{ or } FeCl_{2}] + H_{2}O$$
(I)
2[CuCl or FeCl_{2}] + 2HCl + (O) towards 2[CuCl_{2} \text{ or } FeCl_{3}] + H_{2}O (II)

in which the continuous back reaction of both CuCl, and FeCl, play a chlorine source in experimental instrument. For instance, in case of absence of chlorine source (HCl), the Deacon reaction will be restricted thus, formation of chlorinated compounds expected to limited. Especially, 10-50 ppm HCl concentration was not so enough to expect any chlorinated compounds formation. It can be also explained that the stable nature of chlorinated compounds at greater HCl concentrations, the active site of flyash is limited for chlorine reaction therefore, formation. In addition, during benzene phenol chlorination reaction, the reaction speed highly reduced when higher chlorinated species formed. The observations of mono- through hexachlorobenzenes, suggested that the time factor of reaction in heating chamber. Because chlorine source may stay for few seconds and further mobilized to inpinger. Therefore the time limitation for reaction in heating chamber may reduce any formation but homologue pattern had not much variation. Altogether, our results also co-incided to the organic electron theory and homolytic radical reaction.

References

- 1. Olie K., Vermeulen P.L. and Hutzinger O. (1977) Chemosphere 6, 455
- 2. Addink R. and Olie K. (1995) Environ Sci Technol., 29, 1425
- 3. Altwicker E.R. (1996) J Hazard Mater., 47, 137
- 4. Takasuga T., Makino T., Tsubota K. and Takeda N. (2000)) Chemosphere 40, 1003