ENVIRONMENTAL LEVELS II - POSTER

PCDD/Fs CONCENTRATION IN SOIL OF A JAPANESE LOCAL CITY: POSSIBLE PCDD/Fs SOURCES AND RELATIONSHIP WITH LAND UTILIZATION

Yusaku Ono and <u>Takashi Ikeguchi¹</u>

Center for Environmental Science in Saitama, 914 Kamitanadare, Kisai-cho, Kitasaitama-gun, Saitama 347-0115, Japan ¹ National Institute for Environmental Studies, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8637, Japan

Introduction

Although the Japanese Ministry of Environment has monitored and disclosed PCDD/Fs levels in soil across the country every year, people have much concerned about PCDD/Fs values in soil in their living environment even if there is no prominent susceptible PCDD/Fs sources in their vicinity. This paper presents measurements results of PCDD/Fs levels in soil of a bed-town city of Tokyo, in which 70 soil samples of different land uses were collected throughout the city. PCDD/Fs levels were compared by land use profiles, and possible sources of PCDD/Fs were examined.

Methods and Materials

The city is located in the central Saitama prefecture, northwest to Tokyo, and has a population of 80,000 with 3,600 ha of autonomous area of which a rice paddy, a vegetable growing field, a residential area, and a business-industrial area cover about 800 ha each. Remains are a swamp, forest, and others. There are no centralized municipal waste incinerator or heavy industries including steel or secondary copper smelters that are supposedly major producer of atmospheric PCDD/Fs. However small scale incinerators with a capacity of less than 200 kg/hr, used at the local industries as well as at citizen's home, were once numerous before those incinerator became regulated for PCDD/Fs emission. Bone fires or open burns of household waste or yard clippings including fallen leaves, and agricultural residues at farmland are rather ubiquitous in the area. Soil sampling points include the lane of agricultural farmland (generally used for growing vegetable or flowers) and the rice field, playgrounds at schools or parks, and their shrubbery sites, shrine premises, and green belts of main roads, and others. Samples were undisturbed soils for the last 5 years or more. After removing gravel, wood chips, fallen leaves and plant residue five soil cores with 5 cm diameter and 5 cm depth were sampled at each sampling point. Each core was naturally dried separately and sieved using 2mm mesh sieve. Equal amounts of soil were grabbed from each dried sample and mixed making about 100 g sample for one sampling point in total for a further analysis.

ORGANOHALOGEN COMPOUNDS Vol. 51 (2001)

ENVIRONMENTAL LEVELS II - POSTER

Results and Discussion

2

In Table 1 are shown PCDD/Fs levels in 70 soil samples by land use patterns together with soil characteristics. Highest level, 157.1 pg-TEQ/g, was recorded in the soil of a mound on which row trees were planted to divide a residential area and the main road. However, on average, soil samples obtained at the lane of rice showed higher values. field 71.0 pg-TEQ/g, followed by the soil of the mound, shrubbery of the shrine, and the lane of farmland. The lowest average value, 9.1 pg-TEQ/g, was obtained at the playground soil of schools and parks.

Principal Component Analysis

Possible major origins of PCDD/Fs in the soil may be: (1) direct application, spill or disposal of PCDD/Fs containing materials to the soil. These include a sort of chemical products or combustion residues, atmospheric deposition and (2) of PCDD/Fs traveled from the sources of industrial and social activities including waste combustions. Some samples showed higher levels of 1,3,6,8-TCDD, 1,3,7,9-TCDD, and OCDD, which are known to characterize isomer or congener pattern of the soil at rice paddy or CNP and PCP^{(1), (2)}, a herbicide commonly used at the Japanese rice paddy in the past. Meanwhile, as shown in Figures 1 and 2, congeners values reduced by OCDD or OCDF values are different between soil portion (under 2mm sieve) and humus portion (above 2mm sieve) of the same soil sample, extremely different in PCDFs. This means that in the process of soil mineralization the ratio of lower chlorine congeners to Octa-congeners decreases abruptly. PCDD/Fs deposited on the tree

ORGANOHALOGEN COMPOUNDS Vol. 51 (2001)

Area	ID	Description	PCDD/Fs	PCDDs	PCDFs
	No.		(pq-TEQ/g)	(pq/g)	(pq/g)
Lane of farm land	3	Soil loem.	19	8100	710
	18	Fallow land Sill,	4.7	550	160
	A1	Cicse to rice paddy. Loam	i 17	5300	1100
	A2	Close to rice paddy. Loam.	10	3500	420
	A3	Former farm land. Silly loam.	240	\$800	650
	A4	Close to residential area. Silty k am.	12	2800	300
	A5	Close to rice paddy. Loam.	8.4	12000	430
	A6	Close to residential area. Silty loam.	43	22000	1000
	A7	Close to residential area. Loam	91	68000	1800
Shrubbery	7	Park. Clay.	15	5900	490
of parks or	14	Silty skeletet	22	7900	1000
schools	19	Park. Sandy-skeletal.	15	2600	540
<u> </u>	20	School, Son skeletal,	13	1900	510
1		School, Sondy loom		3100	- 500
	02	Park Silluloam	0.33	220	20
	03	Park Loam	0.33	1900	
	65	Park Loam		1900	3600
	C6	School Sandy loam	15	140	90
Playoround	C7	School Sandy loam	4.5	530	150
of parks or	C8	School, Sandy Joam.	27		130
schools	C9	School, Sandy loam.	11	69	99
	C10	School, Sand.	0.51	140	73
	C11	School Sandy silt-loam.	0.17	110	43
	C12	School. Sandy loam.	30	21000	810
	C 13	Baseball playground. Loam.	1.8	1700	130
	C14	Park. Herbicide applied.	8.8	3300	250
L	C 15	Park, Loam.	3.3	370	140
	1	Shrune site. Sill.	6.6	350	230
Shrine site	5	Temple site. Clay.	5.6	700	200
	1 17	Tampia sila. Saly skolatal.	25	3500	870
	10	Irrigation channel lane. Humic soll,	46	26000	2500
	12	Invigation channel lane		53000	2500
	13	Humic	43	15000	1500
	16	Sitty-skeletal	53	28000	1700
l	27	Close to rice paddy. Loam.	120	110000	4700
Lane of rice	D1	Silly-koam.	59	30000	2200
paudy	D2	Silly-koam.	110	46000	4000
	D3	Loam.	11	4400	380
	D5	Silty-loam.	150	69000	7400
	D6	Sitty-loam.	78	34000	2900
	D7	Satty-loam.	48	22000	2200
	08	Loam.	41	19000	1300
Cide man of	<u></u> .	Sandy loam.	16	1400	
Side way of	0	Clay, Gravel	15	1000	430
main road	15	Ciay, Graver.		16000	930
	4	Humic soil	31	1500	950
	9	Shrine in rice peddy Humic sand	20	5700	690
Shrubbery	25	Humic soil	38	1600	1400
of strines	82	Loam. Herbicido appliod. Small incinerator	77	7400	2400
	B3	Loam. Herbicide applied. Small incinerator	40	3300	1300
	B4	Humic soil.	41	2600	1500
	21	Skeletal soil	77	17000	2400
	22	Skeletal soil.	160	22000	3700
Mound	23	Silty-skeletel	53	29000	2200
		Sily-skelelal.		5500	450
	 	Loam, nerbode appred.	0.18	3000	210
	D4	Sitv-kam.	15	6600	690
	E1	Mound, Loam.	71	21000	3300
	E2	Mound. Loam.	46	13000	1500
	E3	Mound. Loam.	35	7900	2500
	E4	Mound. Loam.	49	9400	1500
	E5	Mound, Loam,	72	23000	1900
	25	Mound Loam	14	3500	630
	E/ F8	Mound Loam	22	4000	590 700
Others	26	Silv steletel	20	5500	670

Table 1. PCDD/Fs levels in 70 soil samples

ENVIRONMENTAL LEVELS II - POSTER

leaves are considered to follow this fate. Principal Component Analysis, taking these facts mentioned above into consideration, showed the *Eigenvalues* of the first and the second components were 5.597996 and 2.358598, respectively and contributions of each component were 62.2% and 26.2%, respectively. Plus *Eigenvalue* of the first component includes samples obtained at places contaminated by herbicide, while minus means soils mineralized from humus (Figure 3). On the other hand the Eigenvalue of the second components expresses contamination levels in general, showing larger value at heavily contaminated sites.

Figure 3. Eigenvector of Component 1

Cluster Analysis

Cluster analysis was conducted for the components values and PCDD/Fs levels (pg-TEQ/g). As shown in Figure 5, the level of PCDD/Fs in Cluster 1, 2 are relatively low and well mineralized, while the soils in Cluster 3,4,5 are relatively contaminated by PCDD/Fs, presumably resulted from PCP or CNP application in the past. The result of cluster analysis and land use profiles are shown in Table 2.

Conclusion

Each cluster is characterized as follows.

(1) Cluster 1: Playgrounds, shrine sites, and farmlands are included in this cluster, and PCDD/Fs

ORGANOHALOGEN COMPOUNDS Vol. 51 (2001)

ENVIRONMENTAL LEVELS II -- POSTER

levels are relatively low (4.7 pg-TEQ/g), meaning less anthropogenic contamination. Playground is abundant in sand on which PCDD/Fs are unlikely adsorbed.

(2) Cluster 2: Farmlands, mounds, shrubbery of shrines, parks and schools, and sideways of the

Figure 5. Relationship between component score and cluster

main road are included in this group, and the soil in these area contain much loam that is likely to adsorb PCDD/Fs. Average value of PCDD/Fs in this cluster is 20.2 pg-TEQ/g.

(3) Cluster 3: Average value of PCDD/Fs of this cluster is 46.0 pg-TEQ/g and includes samples of lanes of a rice fields, shrine shrubbery and mounds where PCP or CNP were likely applied in the past.

(4) Cluster 4: Lane of rice paddy and mound areas are included in this cluster, same as Cluster 3. But average value of PCDD/Fs is 77.6 pg-TEQ/g, higher than that of Cluster 3.

(5) Cluster 5: Average PCDD/Fs in this cluster was calculated as 134.4 pg-TEQ/g, abnormally higher, and the usage of PCP and CNP or open burning of agricultural residues in the past were definitely suspected

۸ma	Cluster							
	1	2	3	4	5	11	r ⊑•≆-pg/g	
Playground of parks or								
schools	13	1		1		15	9.1	
Shrine site	2	1				3	12.2	
Lane of farm land	4	3	1	1		9	25.4	
Lane of rice paddy	1		6	3	3	13	71.0	
Mound	_2	6	3	3	1	15	43.6	
Shrubbery of shrines		2	3	1		6	41.1	
Shrubbery of parks or								
schools		4				4	16.2	
Side way of main road		4				4	17.6	
Others		1				1	22.8	
11	22	22	13	9	4	70	Total	
average TEQ-pg/g	4.7	20.2	46.0	77.6	134.4		34.0	
median TEQ-pg/g	4.6	19.2	45.7	76.8	136.4	21.0		
max TEQ-pg/g	11.6	34.5	58.9	92.0	157.1	157.1		
min TEQ-pg/g	0.2	13.4	38.2	66.5	107.7		0.2	

Table 2. Cluster analysis and land utilization

References

- (1) Wakimoto, T., Murakami, T., and Tatsukawa, R. (1986) The 6th International Symposium on Chlorinated Dioxins and Related Compound, Fukuoka, Japan.
- (2) Masunaga, A., Nkanishi, J. (1999) The 2nd International Workshop on Risk Evaluation & Management of Chemicals, Yokohama, Japan.

ORGANOHALOGEN COMPOUNDS Vol. 51 (2001)

166