ANGIOTENSIN-CONVERTING ENZYME INHIBITORS SUPPRESS HYDROXYL RADICAL GENERATION INDUCED BY NONYLPHENOL IN STRIATUM

Toshio Obata¹, Yasumitsu Yamanaka¹ and Shunichiro Kubota²

'Department of Pharmacology, Oita Medical University, 1-1, Hasama-machi, Oita 879-5593, Japan.

²Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Introduction

Much of the concern appears focused on environmental chemicals such as para-nonylphenol which disrupt various tissues via steroid receptor. Environmental chemicals wilh esirogenic activity are considered to cause a variety of adverse effecis such as reproductive disorders, endocrine disorders, and a variety of cancers^{1, 2}

Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is oxidized by monoamine oxidase and converted to 1-methyl-4 phenylpyridinium ion $(MPP⁺)$. MPTP produces a parkinsonian syndrome after its conversion to MPP^{+ 3,4}. The etiology of Parkinson's disease remain obscure. The cytotoxic hydroxyl radical has been implicated in dopamine neurotoxicity caused by MPTP and iron⁵. Oxidative stress may be involved in the pathogenesis of idiopathic Parkinson's disease in the nigra.

Angiotensin-converting enzyme (ACE) is widely distributed in the brain. In the basal ganglia angiotensin-converting enzyme is associated wilh neurons in the striatum. Although the role of angiotensin-converting enzyme inhibitors in free radical-scavenging effects are still speculative ' the activity of captopril is believed to be due to the presence of an SH-group in its structure 7 . However, non-SH containing angiotensin-converting enzyme inhibitors also provide protection against free radical-induced injury⁸.

We recenlly reported that para-nonylphenol induces hydroxyl radical formation in rat striatum⁹. In this study we examined the antioxidant effects of angiotensin-converting enzyme inhibitors on para-nonylphenol- and MPP* (l-methyl-4-phenylpyridinium ion)-induced hydroxyl radical formation and dopamine efflux in extracellular fluid of rat striatum, using a microdialysis technique.

Materials and Methods

Animals. Adult male Wistar rats (300-400 g) were housed in an environmentally controlled room $(20-25\degree C, 50-60\%$ of humidity) with food and water available ad libitum for 4 days prior to the experiments. The animals were anesthetized with chloral hydrate (400 mg/kg i.p.; Sigma Chemical Co., Sl. Louis, MO) and prepared for inntracranial microdialysis brain perfusion. This study was approved by the Ethics Committee for Animal Experiments, Oita Medical University.

Experimental protocol. MPP+ was purchased from Research Biochemicals Inc. MA. Captopril and enalaprilat were provided purchased from Sigma. A guide cannula was implanted stereotaxically on top of the caudate nucleus (stereotaxic coordinates: AP: 1.0, R/L: 2.5, H: -7 mm from dura matter)¹⁰. In preliminary experiments, the recovery rate of 10^{-7} M dopamine was about 21 % at a flow rate of 1 μ l/min. The drugs were dissolved in Ringer's solution containing 147 mM NaCl, 2.3 mM CaCl₂ and 4 mM KCl, pH 7.0 for perfusion $(1 \mu/mn)$ through a microdialysis ORGANOHALOGEN COMPOUNDS

Vol. 53 (2001) 197

probe into the striatum. Following the scheduled 60-min washout with Ringer's solution, MPP^+ (5) mM or 5 nmol/ μ l/min) was infused for 15 min (total dose: 75 nmol) to evoke the sustained, voltage-regulated, and calcium-dependent release of dopamine. The striatum was then perfused with Ringer's solution (1 μ l/min) for at least 60 min.

Analytical procedures. The dialysate samples were immediately injected for hydroxylradical and dopamine analysis into an HPLC-EC equipped with a glassy carbon working electrode (EICOM CORP., Kyoto, Japan) and an analytical reverse-phase Eicompak MA-5 ODS column $(5 \mu m, 4.6x)$ 150 mm; EICOM). The working electrode was sel at a detector potential of 0.75 V. Each liter of the mobile phase contained 1.5 g heptane sulfonic acid sodium salt (Sigma), 0.1 g Na₂EDTA, 3 ml triethylamine (Wako) and 125 ml acetonitrile (Wako) dissolved in H_2O .

Statistical analysis. All values are presented as means \pm S.E.M. The significance of differences was determined by using an analysis of variance (ANOVA) with Fisher's post hoc test. A P value of less than 0.05 was regarded as being statistically significant.

Results and Discussion

We first examined whether para-nonylphenol enhanced hydroxylradical formation and dopamine efflux induced by MPP⁺. As shown in Figures 1 and 2, para-nonylphenol (10 μ M) enhanced dopamine efflux and hydroxylradical formation trapped as DHBA induced by 5 mM MPP*.

We compared the ability of non-SH-containing angiotensin-converting enzyme inhibitor (enalaprilat) with a SH-containing angiotensin converting enzyme inhibitor (captopril) to scavenge hydroxylradicals and dopamine efflux. When $100 \mu M$ enalaprilat or captopril was infused in para-nonylphenol and MPP⁺-treated rats, the formation of dopamine and hydroxyl radical formation was significantly decreased, as compared with that in the para-nonylphenol and $MPP⁺$ -treated control (Figs. 1 and 2). Both inhibitors were able to scavenge hydroxylradicals and dopamine efflux induced by para-nonylphenol and MPP^.

To further investigate whether the suppressive effect of captopril and enalaprilat on para-nonylphenol and MPP⁺-induced hydroxyl radical formation was based on Fenton-type reaction, the hydroxylradical formation was measured in para-nonylphenol and $\text{MPP}^{\text{+}}$ -treated rats in the presence of iron. When iron (II) (2, 5 and 10 μ M) was administered to 10 μ M para-nonylphenol and 5 mM MPP⁺-treated animals, iron (II) clearly produced a dose-dependent increase in the levels of DHBA, showing a positive linear correlation between iron (II) and hydroxyl radical formation trapped as DHBA $(R^2 = 0.98)$ in the dialysate (Figure not shown). When corresponding experiments were performed in the presence of captopril or enalaprilat, similar results were observed. However, the levels of DHBA in ACE inhibitor-treated group were significantly lower than that observed in para-nonylphenol and MPP⁺-treated group (p <0.05). The results suggest that the suppressive effect of ACE inhibitors on hydroxyl radical formation was based on Fenton-type reaction.

In summary, the results in the present study suggest that angiotensin-converting enzyme inhibitors may protect againsi para-nonylphenol and MPP+-induced hydroxyl radical formation via suppressing dopamine efflux in the rat striatum.

Acknowlegement

This study was supported by Health Science Research Grants for Research on Environmental Health from the Ministry of Health and Welfare of Japan.

References

- 1. Roy D., Palangat M., Chen C-W., Thomas R.D., Colerangle J., Atkinson A. and Yan Z-J. (1997) J Toxi Environ Health 50, 1.
- 2. Reid E.E. and Wilson E. (1944) J Amer Chem Soc 66, 967.
- 3. Chiba K, Frevor AJ, Castagnoli, Jr. (1984) Biochem Biophys Res Commun 120, 574.
- 4. Markey SP, and Schmuff NR (1986) Med Res Rev 6, 389.
- 5. Chiueh CC, Miyake H, and Peng MT (1993) Adv Neurol 60, 251.
- 6. Juggi JS, Koenig-Berard E, and van Gilst WH (1993) Can J Cardiol 9, 336.
- 7. Bagchi B, Prasad R, and Das DK (1989) Biochem Biophys Res Commun 158, 52.
- 8. Fernandes AC, Filipe PM, Freitas JP, and Manso CF (1996) Free Rad Biol Med 20, 507.
- 9. Obata T and Kubota S (2000) Neurosci Lett 296, 41.
- 10. Paxinos G & Watson C (1982) The Rat Brain Stereotaxic Coordinates, 2nd ed. Academic Press. Sydney.

Effect of ACE inhibitors on dopamine efflux Fig.1

ORGANOHALOGEN COMPOUNDS Vol. 53 (2001)

Fig.2 Effect of ACE inhibitors on DHBA formation

