KINETIC ASPECT OF DE NOVO SYNTHESIS OF PCDD/F IN INCINERATOR FLY ASH

H. Huang¹ and A. Buekens².

' Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 81 Xian Lie Zhong Road, Guangzhou 510070 China. " Department of Chemical Engineering and Industrial Chemistry, Free University of Bmssels, Pleinlaan 2, 1050 Bmssels, Belgium E-mail: huanght@ms.giec.ac.cn (H. Huang); [abuekens@vub.ac.be \(](mailto:abuekens@vub.ac.be)A. Buekens)

Introduction

Stieglitz et al.^{1,2} found that de novo synthesis is active on incinerator fly ash at time scales of 15, 30, 60 min, Milligan and Altwicker' observed de novo syndiesis at time scales of 5, 20 and 30 min. Blaha and Hagenmaier⁴ tested a model fly ash and discovered that de novo synthesis can take place at a time scale as short as 1 min. Thus de novo synthesis of PCDD/F on various carbon-containing materials and time scales has already been established. In this paper we present a kinetic model for de novo synthesis based on relevant rate processes.

Kinetic Model Development

The following reaction steps are considered:

Rxn, 1 Rxn, 2 Rxn, 3 $C + aO₂ \rightarrow bCO + cCO₂ + dAr + e(PCDD/F)_s$ $(PCDD/F)_s \rightarrow (PCDD/F)_g$ $(PCDD/F)_{s} \rightarrow$ other products

The subscript s and g indicate solid and gas phase, respectively, Rxn, 1 is a global reaction describing carbon gasification and PCDD/F formation; Rxn. 2 is the desorption of solid-phase PCDD/F to the gas-phase; Rxn. 3 is the degradation of PCDD/F to other products. The differential rate equations for the above set of reactions are:

Eq. 1:
$$
-\frac{d[C]}{dt} = k_I [C] [O, J']
$$

Eq. 2:
$$
\frac{d[PCDD/F]}{dt} = f k_1 [C] [O_2]^n - (k_2 + k_3)[PCDD/F]_n
$$

Eq. 3:
$$
\frac{d[PCDD/F]_s}{dt} = k_1[PCDD/F]_s
$$

where, [C] is the carbon content in incinerator fly ash (g/g); [O₂] is the partial pressure of oxygen (atm); [PCDD/F] is the PCDD/F content $(\mu g/g)$; t is reaction time (min); k_1 is the rate constant of Rxn. 1 $(1/min \cdot atm^{0.5})$, k₂ and k₃ are the rate constant for Rxn. 2 and 3, respectively (l/min). According to the

ORGANOHALOGEN COMPOUNDS Vol. 50 (2001) 411

Arrhenius equation, $k_i = A_i exp(-E_i/RT)$, where A_i is the pre-exponential factor and E_i is the activation energy; A_i has the same unit as k_i; and E_i has the unit cal/mol. The gas constant $R = 1.987$ cal/mol·K; T is temperature in K. f is the PCDD/F yield (μ g/g) from carbon gasified: $f = 10^{-6}A_4 \exp(-E_4/RT)$, and the reaction order $a = 0.5$ (the parameters f and a are discussed next section). Integration of Eq. 1 gives

Eq. 4: $[C] = [C]_0 e^{i n U_0 t}$ where, $[C]_0$ is the initial carbon content (g/g). Substitute Eq. 4 into Eq. 2,

$$
\frac{d[PCDD/F]}{dt} = f[C]_0 k_1[O_2]^{a_3} e^{k_1[O_2]^{0.5}t} - (k_2 + k_3)[PCDD/F],
$$

The solution of this first-order differential equation is

Eq. 5:
$$
\left\{\text{PCDD/F } J_s = \frac{\text{f/C } J_o k_1 \text{[O]} j^{0.5}}{k_2 + k_3 - k_1 \text{[O]} j^{0.5}} \right\} e^{k_1 / O_2 j^{0.5} - e^{-(k_2 - k_3)i} J}
$$

Substitute Eq. 5 into Eq. 3, and integration leads to

Eq. 6:
$$
[PCDD/F]_g = \frac{f[C]_0 k_2}{k_2 + k_3 - k_1 [O_2]^{0.5}} [1 - e^{k_1 [O_2]^{0.5}} - \frac{k_1 [O_2]^{0.5}}{k_2 + k_3} (1 - e^{-(k_2+k_3)t})]
$$

The total amount of PCDD/F is

Eq. 7: $[PCDD/F]_1 = [PCDD/F]_2 + [PCDD/F]_0$ Eqs. 5, 6 and 7 relate the amount of PCDD/F formed to process variables including carbon content $[C]_0$, oxygen $[O_2]$, temperature T (through the rate constants), and reaction time t.

Estimation of Model Parameters

Kinetic parameters for carbon gasification (k_1) , PCDD/F yield (f), desorption (k_2) , and degradation (k_3) have been estimated. According to refs^{5,6}, $a = 0.5$ in Eq. 1. Following ref² the parameters of f are estimated in Table 1 (the negative activation energy in this case is a fitting parameter and reflects that f decreases as T is increased). For PCDD/F desorption and degradation, data in papers^{7,8} were used. After preliminary estimation of model parameters, experimental data of de novo synthesis were used to check the model, and the parameters were adjusted to obtain a best fit to experimental data. Final model parameters are shown in Table 1. With these parameters, PCDD/F formation levels were calculated from Eqs. 5, 6 and 7, and listed in Table 2 and 3. It can be seen that the model agrees with experimental data within the usual range of uncertainty in de novo synthesis tests.

	А	E (cal/mol)
\mathbf{k}_1	$5.1x10^4$ 1/min \cdot atm ^{0.5}	17000
k ₂	$1.05x10^{11}$ 1/min	35000
\mathbf{k}_3	8.5×10^{14} 1/min	44250
f	$1.6x10^{7}$ μ g/g	-3500

Table 1. Kinetic parameters for rate equation: $k = \Lambda$ exp(-E /PT).

ORGANOHALOGEN COMPOUNDS Vol. 50 (2001) 412

Calculation Results

ļ

The differential form of the kinetic model (Eqs. 1, 2 and 3) are numerically integrated with kinetic constants and reaction rates evaluated using local temperatures. To account for ash deposition, an average residence time of fly ash in the relevant regions is assumed, and the actual fly ash amount including fly ash holdup is calculated by: (input fly ash concentration) x (residence time of fly ash) /

ORGANOHALOGEN COMPOUNDS

Vol. 50 (2001) 413

	Fable 5. Alliounts of PCDD/F in the gas phase (wt. % of fold).	
Temperature $(^{\circ}C)$	Experiment (Altwicker et al.'	Calculation
250	0.7	0.8
285		6.3
300	37	14.8
350	94	84.3

 T_{a} \hat{f} \hat

^aOther input conditions are: fly ash concentration = 10 g/Nm³; initial carbon content in fly ash = 0.02 g/g ; partial pressure of oxygen = 0.1 atm. ^bDecreasing linearly from inlet to outlet temperature.

(residence time of flue gas). [C] and [PCDD/F] now are the actual carbon amount $(g/Nm³)$ and PCDD/F amount (μ g/Nm³), respectively. The calculation results are summarised in Table 4. In the boiler section if there is no ash deposition (i,e, the residence times of flue gas and fly ash are the same), then the PCDD/F formation level is low. If the residence time of fly ash is increased to several minutes, then the de novo synthesis of PCDD/F is very much increased, and PCDD/F formed at this temperature range have a significant portion present in the gas phase. For elecfrofilters, the calculated amount of PCDD/F from de novo synthesis is about the same as in the boiler section, although PCDD/F formed in this temperature range are mostly present in the solid phase. For fabric filters, PCDD/F formation from de novo synthesis is predicted to be entirely in the solid phase.

References

1. Stieglitz, L., Vogg, H. (1988) Formation and decomposition of polychlorinated dibenzodioxins and furans in municipal waste incineration, Report KfK 4379, Karlsruhe, Germany.

2. Stieglitz, L., Eichberger, M., Schleihauf, J., Zwick, G., Will, R. (1993) Chemosphere 27, 343.

3. Milligan, M.S., Altwicker, E. (1993) Environ Sci Technol. 27, 1595.

- 4. Blaha, J., Hagenmaier, H. (1995) Organohalogen Compd. 23, 403.
- 5. Milligan, M.S., Altwicker, E. (1993) Carbon 31, 977.
- 6. Ismail, I.M.K., Walker Jr, PL. (1989) Carbon 27, 549.
- 7. Altwicker, E.R., Xun, Y., Milligan, M.S. (1994) Organohalogen Compd. 20, 381.
- 8. Collina, E,, Lasagni, M., Pitea, D,, Keil, B,, Stieglitz, L, (1995) Environ Sci Technol. 29, 577.
- 9. Addink, R., Espourteille, F., Altwicker, E.R. (1998) Environ Sci Technol. 32, 3356.

ORGANOHALOGEN COMPOUNDS $\text{Vol. } 50 \text{ (2001)}$ 414